Spaces:
Runtime error
Runtime error
File size: 1,987 Bytes
e9165df 8549305 70cff9c 05c8948 8549305 70cff9c 05c8948 9f24a1c 8549305 1730273 e9165df 8549305 e9165df 70cff9c 8549305 70cff9c 8549305 70cff9c e9165df 8549305 70cff9c 8549305 e9165df 70cff9c 8549305 70cff9c 8549305 9f24a1c 8549305 9f24a1c 8549305 9f24a1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
#import torch
#from torch import autocast // only for GPU
from PIL import Image
import numpy as np
from io import BytesIO
import os
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD')
from diffusers import StableDiffusionImg2ImgPipeline
print("hello sylvain")
YOUR_TOKEN=MY_SECRET_TOKEN
device="cpu"
#prompt_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN)
#prompt_pipe.to(device)
img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN)
img_pipe.to(device)
source_img = gr.Image(source="upload", type="filepath", label="init_img | 512*512 px")
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
def resize(value,img):
#baseheight = value
img = Image.open(img)
#hpercent = (baseheight/float(img.size[1]))
#wsize = int((float(img.size[0])*float(hpercent)))
#img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS)
img = img.resize((value,value), Image.Resampling.LANCZOS)
return img
def infer(prompt, source_img):
source_image = resize(512, source_img)
source_image.save('source.png')
images_list = img_pipe([prompt] * 2, init_image=source_image, strength=0.75)
images = []
safe_image = Image.open(r"unsafe.png")
for i, image in enumerate(images_list["sample"]):
if(images_list["nsfw_content_detected"][i]):
images.append(safe_image)
else:
images.append(image)
return images
print("Great sylvain ! Everything is working fine !")
title="Img2Img Stable Diffusion CPU"
description="Img2Img Stable Diffusion example using CPU and HF token. <br />Warning: Slow process... ~5/10 min inference time. <b>NSFW filter enabled.</b>"
gr.Interface(fn=infer, inputs=["text", source_img], outputs=gallery,title=title,description=description).queue(max_size=100).launch(enable_queue=True) |