File size: 1,595 Bytes
1afc839
 
 
 
 
 
 
 
e13b608
 
 
1afc839
 
 
 
 
 
 
e13b608
1afc839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from torch import autocast
import requests
import torch
from PIL import Image
from io import BytesIO

from diffusers import StableDiffusionImg2ImgPipeline

import os
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD')
YOUR_TOKEN=MY_SECRET_TOKEN
# load the pipeline
device = "cuda"
model_id_or_path = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
    model_id_or_path,
    revision="fp16", 
    torch_dtype=torch.float16,
    use_auth_token=YOUR_TOKEN
)
# or download via git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
# and pass `model_id_or_path="./stable-diffusion-v1-4"` without having to use `use_auth_token=True`.
pipe = pipe.to(device)

# let's download an initial image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"

response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((768, 512))

prompt = "Lively, illustration of a [[[<king::4>]]], portrait, fantasy, intricate, Scenic, hyperdetailed, hyper realistic <king-hearthstone>, unreal engine, 4k, smooth, sharp focus, intricate, cinematic lighting, highly detailed, octane, digital painting, artstation, concept art, vibrant colors, Cinema4D, WLOP, 3d render, in the style of hearthstone::5 art by Artgerm and greg rutkowski and magali villeneuve, martina jackova, Giger"

with autocast("cuda"):
    images = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5).images

images[0].save("fantasy_landscape.png")