Spaces:
Runtime error
Runtime error
File size: 9,288 Bytes
e0b74e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import json
import inspect
import torch
import os
import sys
import yaml
from shutil import copy, copytree
from os.path import join, dirname, realpath, expanduser, isfile, isdir, basename
class Logger(object):
def __getattr__(self, k):
return print
log = Logger()
def training_config_from_cli_args():
experiment_name = sys.argv[1]
experiment_id = int(sys.argv[2])
yaml_config = yaml.load(open(f'experiments/{experiment_name}'), Loader=yaml.SafeLoader)
config = yaml_config['configuration']
config = {**config, **yaml_config['individual_configurations'][experiment_id]}
config = AttributeDict(config)
return config
def score_config_from_cli_args():
experiment_name = sys.argv[1]
experiment_id = int(sys.argv[2])
yaml_config = yaml.load(open(f'experiments/{experiment_name}'), Loader=yaml.SafeLoader)
config = yaml_config['test_configuration_common']
if type(yaml_config['test_configuration']) == list:
test_id = int(sys.argv[3])
config = {**config, **yaml_config['test_configuration'][test_id]}
else:
config = {**config, **yaml_config['test_configuration']}
if 'test_configuration' in yaml_config['individual_configurations'][experiment_id]:
config = {**config, **yaml_config['individual_configurations'][experiment_id]['test_configuration']}
train_checkpoint_id = yaml_config['individual_configurations'][experiment_id]['name']
config = AttributeDict(config)
return config, train_checkpoint_id
def get_from_repository(local_name, repo_files, integrity_check=None, repo_dir='~/dataset_repository',
local_dir='~/datasets'):
""" copies files from repository to local folder.
repo_files: list of filenames or list of tuples [filename, target path]
e.g. get_from_repository('MyDataset', [['data/dataset1.tar', 'other/path/ds03.tar'])
will create a folder 'MyDataset' in local_dir, and extract the content of
'<repo_dir>/data/dataset1.tar' to <local_dir>/MyDataset/other/path.
"""
local_dir = realpath(join(expanduser(local_dir), local_name))
dataset_exists = True
# check if folder is available
if not isdir(local_dir):
dataset_exists = False
if integrity_check is not None:
try:
integrity_ok = integrity_check(local_dir)
except BaseException:
integrity_ok = False
if integrity_ok:
log.hint('Passed custom integrity check')
else:
log.hint('Custom integrity check failed')
dataset_exists = dataset_exists and integrity_ok
if not dataset_exists:
repo_dir = realpath(expanduser(repo_dir))
for i, filename in enumerate(repo_files):
if type(filename) == str:
origin, target = filename, filename
archive_target = join(local_dir, basename(origin))
extract_target = join(local_dir)
else:
origin, target = filename
archive_target = join(local_dir, dirname(target), basename(origin))
extract_target = join(local_dir, dirname(target))
archive_origin = join(repo_dir, origin)
log.hint(f'copy: {archive_origin} to {archive_target}')
# make sure the path exists
os.makedirs(dirname(archive_target), exist_ok=True)
if os.path.isfile(archive_target):
# only copy if size differs
if os.path.getsize(archive_target) != os.path.getsize(archive_origin):
log.hint(f'file exists but filesize differs: target {os.path.getsize(archive_target)} vs. origin {os.path.getsize(archive_origin)}')
copy(archive_origin, archive_target)
else:
copy(archive_origin, archive_target)
extract_archive(archive_target, extract_target, noarchive_ok=True)
# concurrent processes might have deleted the file
if os.path.isfile(archive_target):
os.remove(archive_target)
def extract_archive(filename, target_folder=None, noarchive_ok=False):
from subprocess import run, PIPE
if filename.endswith('.tgz') or filename.endswith('.tar'):
command = f'tar -xf {filename}'
command += f' -C {target_folder}' if target_folder is not None else ''
elif filename.endswith('.tar.gz'):
command = f'tar -xzf {filename}'
command += f' -C {target_folder}' if target_folder is not None else ''
elif filename.endswith('zip'):
command = f'unzip {filename}'
command += f' -d {target_folder}' if target_folder is not None else ''
else:
if noarchive_ok:
return
else:
raise ValueError(f'unsuppored file ending of {filename}')
log.hint(command)
result = run(command.split(), stdout=PIPE, stderr=PIPE)
if result.returncode != 0:
print(result.stdout, result.stderr)
class AttributeDict(dict):
"""
An extended dictionary that allows access to elements as atttributes and counts
these accesses. This way, we know if some attributes were never used.
"""
def __init__(self, *args, **kwargs):
from collections import Counter
super().__init__(*args, **kwargs)
self.__dict__['counter'] = Counter()
def __getitem__(self, k):
self.__dict__['counter'][k] += 1
return super().__getitem__(k)
def __getattr__(self, k):
self.__dict__['counter'][k] += 1
return super().get(k)
def __setattr__(self, k, v):
return super().__setitem__(k, v)
def __delattr__(self, k, v):
return super().__delitem__(k, v)
def unused_keys(self, exceptions=()):
return [k for k in super().keys() if self.__dict__['counter'][k] == 0 and k not in exceptions]
def assume_no_unused_keys(self, exceptions=()):
if len(self.unused_keys(exceptions=exceptions)) > 0:
log.warning('Unused keys:', self.unused_keys(exceptions=exceptions))
def get_attribute(name):
import importlib
if name is None:
raise ValueError('The provided attribute is None')
name_split = name.split('.')
mod = importlib.import_module('.'.join(name_split[:-1]))
return getattr(mod, name_split[-1])
def filter_args(input_args, default_args):
updated_args = {k: input_args[k] if k in input_args else v for k, v in default_args.items()}
used_args = {k: v for k, v in input_args.items() if k in default_args}
unused_args = {k: v for k, v in input_args.items() if k not in default_args}
return AttributeDict(updated_args), AttributeDict(used_args), AttributeDict(unused_args)
def load_model(checkpoint_id, weights_file=None, strict=True, model_args='from_config', with_config=False):
config = json.load(open(join('logs', checkpoint_id, 'config.json')))
if model_args != 'from_config' and type(model_args) != dict:
raise ValueError('model_args must either be "from_config" or a dictionary of values')
model_cls = get_attribute(config['model'])
# load model
if model_args == 'from_config':
_, model_args, _ = filter_args(config, inspect.signature(model_cls).parameters)
model = model_cls(**model_args)
if weights_file is None:
weights_file = realpath(join('logs', checkpoint_id, 'weights.pth'))
else:
weights_file = realpath(join('logs', checkpoint_id, weights_file))
if isfile(weights_file):
weights = torch.load(weights_file)
for _, w in weights.items():
assert not torch.any(torch.isnan(w)), 'weights contain NaNs'
model.load_state_dict(weights, strict=strict)
else:
raise FileNotFoundError(f'model checkpoint {weights_file} was not found')
if with_config:
return model, config
return model
class TrainingLogger(object):
def __init__(self, model, log_dir, config=None, *args):
super().__init__()
self.model = model
self.base_path = join(f'logs/{log_dir}') if log_dir is not None else None
os.makedirs('logs/', exist_ok=True)
os.makedirs(self.base_path, exist_ok=True)
if config is not None:
json.dump(config, open(join(self.base_path, 'config.json'), 'w'))
def iter(self, i, **kwargs):
if i % 100 == 0 and 'loss' in kwargs:
loss = kwargs['loss']
print(f'iteration {i}: loss {loss:.4f}')
def save_weights(self, only_trainable=False, weight_file='weights.pth'):
if self.model is None:
raise AttributeError('You need to provide a model reference when initializing TrainingTracker to save weights.')
weights_path = join(self.base_path, weight_file)
weight_dict = self.model.state_dict()
if only_trainable:
weight_dict = {n: weight_dict[n] for n, p in self.model.named_parameters() if p.requires_grad}
torch.save(weight_dict, weights_path)
log.info(f'Saved weights to {weights_path}')
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
""" automatically stop processes if used in a context manager """
pass |