File size: 9,288 Bytes
e0b74e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import json
import inspect
import torch
import os
import sys
import yaml
from shutil import copy, copytree
from os.path import join, dirname, realpath, expanduser, isfile, isdir, basename


class Logger(object):

    def __getattr__(self, k):
        return print

log = Logger()

def training_config_from_cli_args():
    experiment_name = sys.argv[1]
    experiment_id = int(sys.argv[2])

    yaml_config = yaml.load(open(f'experiments/{experiment_name}'), Loader=yaml.SafeLoader)

    config = yaml_config['configuration']
    config = {**config, **yaml_config['individual_configurations'][experiment_id]}
    config = AttributeDict(config)
    return config


def score_config_from_cli_args():
    experiment_name = sys.argv[1]
    experiment_id = int(sys.argv[2])
    

    yaml_config = yaml.load(open(f'experiments/{experiment_name}'), Loader=yaml.SafeLoader)

    config = yaml_config['test_configuration_common']

    if type(yaml_config['test_configuration']) == list:
        test_id = int(sys.argv[3])
        config = {**config, **yaml_config['test_configuration'][test_id]}
    else:
        config = {**config, **yaml_config['test_configuration']}

    if 'test_configuration' in yaml_config['individual_configurations'][experiment_id]:
        config = {**config, **yaml_config['individual_configurations'][experiment_id]['test_configuration']}

    train_checkpoint_id = yaml_config['individual_configurations'][experiment_id]['name']

    config = AttributeDict(config)
    return config, train_checkpoint_id


def get_from_repository(local_name, repo_files, integrity_check=None, repo_dir='~/dataset_repository', 
                        local_dir='~/datasets'):
    """ copies files from repository to local folder.
    
    repo_files: list of filenames or list of tuples [filename, target path] 

    e.g. get_from_repository('MyDataset', [['data/dataset1.tar', 'other/path/ds03.tar'])
    will create a folder 'MyDataset' in local_dir, and extract the content of
    '<repo_dir>/data/dataset1.tar' to <local_dir>/MyDataset/other/path.
     """

    local_dir = realpath(join(expanduser(local_dir), local_name))

    dataset_exists = True

    # check if folder is available
    if not isdir(local_dir):
        dataset_exists = False

    if integrity_check is not None:
        try:
            integrity_ok = integrity_check(local_dir)
        except BaseException:
            integrity_ok = False

        if integrity_ok:
            log.hint('Passed custom integrity check')
        else:
            log.hint('Custom integrity check failed')

        dataset_exists = dataset_exists and integrity_ok

    if not dataset_exists:

        repo_dir = realpath(expanduser(repo_dir))

        for i, filename in enumerate(repo_files):

            if type(filename) == str:
                origin, target = filename, filename
                archive_target = join(local_dir, basename(origin))
                extract_target = join(local_dir)
            else:
                origin, target = filename
                archive_target = join(local_dir, dirname(target), basename(origin))
                extract_target = join(local_dir, dirname(target))
            
            archive_origin = join(repo_dir, origin)

            log.hint(f'copy: {archive_origin} to {archive_target}')

            # make sure the path exists
            os.makedirs(dirname(archive_target), exist_ok=True)

            if os.path.isfile(archive_target):
                # only copy if size differs
                if os.path.getsize(archive_target) != os.path.getsize(archive_origin):
                    log.hint(f'file exists but filesize differs: target {os.path.getsize(archive_target)} vs. origin {os.path.getsize(archive_origin)}')
                    copy(archive_origin, archive_target)
            else:
                copy(archive_origin, archive_target)

            extract_archive(archive_target, extract_target, noarchive_ok=True)

            # concurrent processes might have deleted the file
            if os.path.isfile(archive_target):
                os.remove(archive_target)


def extract_archive(filename, target_folder=None, noarchive_ok=False):
    from subprocess import run, PIPE

    if filename.endswith('.tgz') or filename.endswith('.tar'):
        command = f'tar -xf {filename}'
        command += f' -C {target_folder}' if target_folder is not None else ''
    elif filename.endswith('.tar.gz'):
        command = f'tar -xzf {filename}'
        command += f' -C {target_folder}' if target_folder is not None else ''
    elif filename.endswith('zip'):
        command = f'unzip {filename}'
        command += f' -d {target_folder}' if target_folder is not None else ''
    else:
        if noarchive_ok:
            return
        else:
            raise ValueError(f'unsuppored file ending of {filename}')

    log.hint(command)
    result = run(command.split(), stdout=PIPE, stderr=PIPE)
    if result.returncode != 0:
        print(result.stdout, result.stderr)


class AttributeDict(dict):
    """ 
    An extended dictionary that allows access to elements as atttributes and counts 
    these accesses. This way, we know if some attributes were never used. 
    """

    def __init__(self, *args, **kwargs):
        from collections import Counter
        super().__init__(*args, **kwargs)
        self.__dict__['counter'] = Counter()

    def __getitem__(self, k):
        self.__dict__['counter'][k] += 1
        return super().__getitem__(k)

    def __getattr__(self, k):
        self.__dict__['counter'][k] += 1
        return super().get(k)

    def __setattr__(self, k, v):
        return super().__setitem__(k, v)

    def __delattr__(self, k, v):
        return super().__delitem__(k, v)    

    def unused_keys(self, exceptions=()):
        return [k for k in super().keys() if self.__dict__['counter'][k] == 0 and k not in exceptions]

    def assume_no_unused_keys(self, exceptions=()):
        if len(self.unused_keys(exceptions=exceptions)) > 0:
            log.warning('Unused keys:', self.unused_keys(exceptions=exceptions))


def get_attribute(name):
    import importlib

    if name is None:
        raise ValueError('The provided attribute is None')
    
    name_split = name.split('.')
    mod = importlib.import_module('.'.join(name_split[:-1]))
    return getattr(mod, name_split[-1])



def filter_args(input_args, default_args):

    updated_args = {k: input_args[k] if k in input_args else v for k, v in default_args.items()}
    used_args = {k: v for k, v in input_args.items() if k in default_args}
    unused_args = {k: v for k, v in input_args.items() if k not in default_args}

    return AttributeDict(updated_args), AttributeDict(used_args), AttributeDict(unused_args)


def load_model(checkpoint_id, weights_file=None, strict=True, model_args='from_config', with_config=False):

    config = json.load(open(join('logs', checkpoint_id, 'config.json')))

    if model_args != 'from_config' and type(model_args) != dict:
        raise ValueError('model_args must either be "from_config" or a dictionary of values')

    model_cls = get_attribute(config['model'])

    # load model
    if model_args == 'from_config':
        _, model_args, _ = filter_args(config, inspect.signature(model_cls).parameters)

    model = model_cls(**model_args)

    if weights_file is None:
        weights_file = realpath(join('logs', checkpoint_id, 'weights.pth'))
    else:
        weights_file = realpath(join('logs', checkpoint_id, weights_file))

    if isfile(weights_file):
        weights = torch.load(weights_file)
        for _, w in weights.items():
            assert not torch.any(torch.isnan(w)), 'weights contain NaNs'
        model.load_state_dict(weights, strict=strict)
    else:
        raise FileNotFoundError(f'model checkpoint {weights_file} was not found')

    if with_config:
        return model, config
    
    return model


class TrainingLogger(object):

    def __init__(self, model, log_dir, config=None, *args):
        super().__init__()
        self.model = model
        self.base_path = join(f'logs/{log_dir}') if log_dir is not None else None

        os.makedirs('logs/', exist_ok=True)
        os.makedirs(self.base_path, exist_ok=True)

        if config is not None:
            json.dump(config, open(join(self.base_path, 'config.json'), 'w'))

    def iter(self, i, **kwargs):
        if i % 100 == 0 and 'loss' in kwargs:
            loss = kwargs['loss']
            print(f'iteration {i}: loss {loss:.4f}')

    def save_weights(self, only_trainable=False, weight_file='weights.pth'):
        if self.model is None:
            raise AttributeError('You need to provide a model reference when initializing TrainingTracker to save weights.')

        weights_path = join(self.base_path, weight_file)

        weight_dict = self.model.state_dict()

        if only_trainable:
            weight_dict = {n: weight_dict[n] for n, p in self.model.named_parameters() if p.requires_grad}
        
        torch.save(weight_dict, weights_path)
        log.info(f'Saved weights to {weights_path}')

    def __enter__(self):
        return self

    def __exit__(self, type, value, traceback):
        """ automatically stop processes if used in a context manager """
        pass