File size: 16,896 Bytes
e0b74e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
from torch.functional import Tensor

import torch
import inspect
import json
import yaml
import time
import sys

from general_utils import log

import numpy as np
from os.path import expanduser, join, isfile, realpath

from torch.utils.data import DataLoader

from metrics import FixedIntervalMetrics

from general_utils import load_model, log, score_config_from_cli_args, AttributeDict, get_attribute, filter_args


DATASET_CACHE = dict()

def load_model(checkpoint_id, weights_file=None, strict=True, model_args='from_config', with_config=False, ignore_weights=False):

    config = json.load(open(join('logs', checkpoint_id, 'config.json')))

    if model_args != 'from_config' and type(model_args) != dict:
        raise ValueError('model_args must either be "from_config" or a dictionary of values')

    model_cls = get_attribute(config['model'])

    # load model
    if model_args == 'from_config':
        _, model_args, _ = filter_args(config, inspect.signature(model_cls).parameters)

    model = model_cls(**model_args)

    if weights_file is None:
        weights_file = realpath(join('logs', checkpoint_id, 'weights.pth'))
    else:
        weights_file = realpath(join('logs', checkpoint_id, weights_file))

    if isfile(weights_file) and not ignore_weights:
        weights = torch.load(weights_file)
        for _, w in weights.items():
            assert not torch.any(torch.isnan(w)), 'weights contain NaNs'
        model.load_state_dict(weights, strict=strict)
    else:
        if not ignore_weights:
            raise FileNotFoundError(f'model checkpoint {weights_file} was not found')

    if with_config:
        return model, config
    
    return model


def compute_shift2(model, datasets, seed=123, repetitions=1):
    """ computes shift """
    
    model.eval()
    model.cuda()

    import random
    random.seed(seed)

    preds, gts = [], []
    for i_dataset, dataset in enumerate(datasets):

        loader = DataLoader(dataset, batch_size=1, num_workers=0, shuffle=False, drop_last=False)

        max_iterations = int(repetitions * len(dataset.dataset.data_list))
        
        with torch.no_grad():

            i, losses = 0, []
            for i_all, (data_x, data_y) in enumerate(loader):

                data_x = [v.cuda(non_blocking=True) if v is not None else v for v in data_x]
                data_y = [v.cuda(non_blocking=True) if v is not None else v for v in data_y]

                pred, = model(data_x[0], data_x[1], data_x[2])
                preds += [pred.detach()]
                gts += [data_y]

                i += 1
                if max_iterations and i >= max_iterations:
                    break
        
    from metrics import FixedIntervalMetrics
    n_values = 51
    thresholds = np.linspace(0, 1, n_values)[1:-1]
    metric = FixedIntervalMetrics(resize_pred=True, sigmoid=True, n_values=n_values)

    for p, y in zip(preds, gts):
        metric.add(p.unsqueeze(1), y)     
            
    best_idx = np.argmax(metric.value()['fgiou_scores'])
    best_thresh = thresholds[best_idx]

    return best_thresh


def get_cached_pascal_pfe(split, config):
    from datasets.pfe_dataset import PFEPascalWrapper
    try:
        dataset =  DATASET_CACHE[(split, config.image_size, config.label_support, config.mask)]
    except KeyError:
        dataset = PFEPascalWrapper(mode='val', split=split, mask=config.mask, image_size=config.image_size, label_support=config.label_support)
        DATASET_CACHE[(split, config.image_size, config.label_support, config.mask)] = dataset
    return dataset




def main():
    config, train_checkpoint_id = score_config_from_cli_args()

    metrics = score(config, train_checkpoint_id, None)

    for dataset in metrics.keys():
        for k in metrics[dataset]:
            if type(metrics[dataset][k]) in {float, int}:
                print(dataset, f'{k:<16} {metrics[dataset][k]:.3f}')


def score(config, train_checkpoint_id, train_config):

    config = AttributeDict(config)

    print(config)

    # use training dataset and loss
    train_config = AttributeDict(json.load(open(f'logs/{train_checkpoint_id}/config.json')))

    cp_str = f'_{config.iteration_cp}' if config.iteration_cp is not None else ''


    model_cls = get_attribute(train_config['model'])

    _, model_args, _ = filter_args(train_config, inspect.signature(model_cls).parameters)

    model_args = {**model_args, **{k: config[k] for k in ['process_cond', 'fix_shift'] if k in config}}

    strict_models = {'ConditionBase4', 'PFENetWrapper'}
    model = load_model(train_checkpoint_id, strict=model_cls.__name__ in strict_models, model_args=model_args, 
                        weights_file=f'weights{cp_str}.pth', )
                           

    model.eval()
    model.cuda()

    metric_args = dict()

    if 'threshold' in config:
        if config.metric.split('.')[-1] == 'SkLearnMetrics':
            metric_args['threshold'] = config.threshold

    if 'resize_to' in config:
        metric_args['resize_to'] = config.resize_to

    if 'sigmoid' in config:
        metric_args['sigmoid'] = config.sigmoid    

    if 'custom_threshold' in config:
        metric_args['custom_threshold'] = config.custom_threshold     

    if config.test_dataset == 'pascal':
        
        loss_fn = get_attribute(train_config.loss)
        # assume that if no split is specified in train_config, test on all splits, 
        
        if 'splits' in config:
            splits = config.splits 
        else:
            if 'split' in train_config and type(train_config.split) == int:
                # unless train_config has a split set, in that case assume train mode in training
                splits = [train_config.split]
                assert train_config.mode == 'train'
            else:
                splits = [0,1,2,3]
            
        log.info('Test on these splits', splits)

        scores = dict()
        for split in splits:

            shift = config.shift if 'shift' in config else 0

            # automatic shift
            if shift == 'auto':
                shift_compute_t = time.time()
                shift = compute_shift2(model, [get_cached_pascal_pfe(s, config) for s in range(4) if s != split], repetitions=config.compute_shift_fac)
                log.info(f'Best threshold is {shift}, computed on splits: {[s for s in range(4) if s != split]}, took {time.time() - shift_compute_t:.1f}s')

            dataset = get_cached_pascal_pfe(split, config)

            eval_start_t = time.time()

            loader = DataLoader(dataset, batch_size=1, num_workers=0, shuffle=False, drop_last=False)

            assert config.batch_size is None or config.batch_size == 1, 'When PFE Dataset is used, batch size must be 1'

            metric = FixedIntervalMetrics(resize_pred=True, sigmoid=True, custom_threshold=shift, **metric_args)

            with torch.no_grad():

                i, losses = 0, []
                for i_all, (data_x, data_y) in enumerate(loader):

                    data_x = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_x]
                    data_y = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_y]

                    if config.mask == 'separate':  # for old CondBase model
                        pred, = model(data_x[0], data_x[1], data_x[2])
                    else:
                        # assert config.mask in {'text', 'highlight'}
                        pred, _, _, _  = model(data_x[0], data_x[1], return_features=True)

                    # loss = loss_fn(pred, data_y[0])
                    metric.add(pred.unsqueeze(1) + shift, data_y)

                    # losses += [float(loss)]

                    i += 1
                    if config.max_iterations and i >= config.max_iterations:
                        break

            #scores[split] = {m: s for m, s in zip(metric.names(), metric.value())}

            log.info(f'Dataset length: {len(dataset)}, took {time.time() - eval_start_t:.1f}s to evaluate.')

            print(metric.value()['mean_iou_scores'])

            scores[split] = metric.scores()

            log.info(f'Completed split {split}')
        
        key_prefix = config['name'] if 'name' in config else 'pas'

        all_keys = set.intersection(*[set(v.keys()) for v in scores.values()])

        valid_keys = [k for k in all_keys if all(v[k] is not None and isinstance(v[k], (int, float, np.float)) for v in scores.values())]

        return {key_prefix: {k: np.mean([s[k] for s in scores.values()]) for k in valid_keys}}


    if config.test_dataset == 'coco':
        from datasets.coco_wrapper import COCOWrapper

        coco_dataset = COCOWrapper('test', fold=train_config.fold, image_size=train_config.image_size, mask=config.mask,
                                    with_class_label=True)

        log.info('Dataset length', len(coco_dataset))
        loader = DataLoader(coco_dataset, batch_size=config.batch_size, num_workers=2, shuffle=False, drop_last=False)
        
        metric = get_attribute(config.metric)(resize_pred=True, **metric_args)

        shift = config.shift if 'shift' in config else 0

        with torch.no_grad():

            i, losses = 0, []
            for i_all, (data_x, data_y) in enumerate(loader):
                data_x = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_x]
                data_y = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_y]

                if config.mask == 'separate':  # for old CondBase model
                    pred, = model(data_x[0], data_x[1], data_x[2])
                else:
                    # assert config.mask in {'text', 'highlight'}
                    pred, _, _, _  = model(data_x[0], data_x[1], return_features=True)

                metric.add([pred + shift], data_y)

                i += 1
                if config.max_iterations and i >= config.max_iterations:
                    break                

        key_prefix = config['name'] if 'name' in config else 'coco'      
        return {key_prefix: metric.scores()}
        #return {key_prefix: {k: v for k, v in zip(metric.names(), metric.value())}}


    if config.test_dataset == 'phrasecut':
        from datasets.phrasecut import PhraseCut

        only_visual = config.only_visual is not None and config.only_visual
        with_visual = config.with_visual is not None and config.with_visual

        dataset = PhraseCut('test', 
                            image_size=train_config.image_size,
                            mask=config.mask, 
                            with_visual=with_visual, only_visual=only_visual, aug_crop=False, 
                            aug_color=False)

        loader = DataLoader(dataset, batch_size=config.batch_size, num_workers=2, shuffle=False, drop_last=False)
        metric = get_attribute(config.metric)(resize_pred=True, **metric_args)

        shift = config.shift if 'shift' in config else 0


        with torch.no_grad():

            i, losses = 0, []
            for i_all, (data_x, data_y) in enumerate(loader):
                data_x = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_x]
                data_y = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_y]

                pred, _, _, _  = model(data_x[0], data_x[1], return_features=True)
                metric.add([pred + shift], data_y)

                i += 1
                if config.max_iterations and i >= config.max_iterations:
                    break                

        key_prefix = config['name'] if 'name' in config else 'phrasecut'      
        return {key_prefix: metric.scores()}
        #return {key_prefix: {k: v for k, v in zip(metric.names(), metric.value())}}

    if config.test_dataset == 'pascal_zs':
        from third_party.JoEm.model.metric import Evaluator
        from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC
        from datasets.pascal_zeroshot import PascalZeroShot, PASCAL_VOC_CLASSES_ZS

        from models.clipseg import CLIPSegMultiLabel

        n_unseen = train_config.remove_classes[1]

        pz = PascalZeroShot('val', n_unseen, image_size=352)
        m = CLIPSegMultiLabel(model=train_config.name).cuda()
        m.eval();

        print(len(pz), n_unseen)
        print('training removed', [c for class_set in PASCAL_VOC_CLASSES_ZS[:n_unseen // 2] for c in class_set])

        print('unseen', [VOC[i] for i in get_unseen_idx(n_unseen)])
        print('seen', [VOC[i] for i in get_seen_idx(n_unseen)])

        loader = DataLoader(pz, batch_size=8)
        evaluator = Evaluator(21, get_unseen_idx(n_unseen), get_seen_idx(n_unseen))

        for i, (data_x, data_y) in enumerate(loader):
            pred = m(data_x[0].cuda())
            evaluator.add_batch(data_y[0].numpy(), pred.argmax(1).cpu().detach().numpy())
            
            if config.max_iter is not None and i > config.max_iter: 
                break
                
        scores = evaluator.Mean_Intersection_over_Union()        
        key_prefix = config['name'] if 'name' in config else 'pas_zs'      

        return {key_prefix: {k: scores[k] for k in ['seen', 'unseen', 'harmonic', 'overall']}}

    elif config.test_dataset in {'same_as_training', 'affordance'}:
        loss_fn = get_attribute(train_config.loss)

        metric_cls = get_attribute(config.metric)
        metric = metric_cls(**metric_args)

        if config.test_dataset == 'same_as_training':
            dataset_cls = get_attribute(train_config.dataset)
        elif config.test_dataset == 'affordance':
            dataset_cls = get_attribute('datasets.lvis_oneshot3.LVIS_Affordance')
            dataset_name = 'aff'
        else:
            dataset_cls = get_attribute('datasets.lvis_oneshot3.LVIS_OneShot')
            dataset_name = 'lvis'

        _, dataset_args, _ = filter_args(config, inspect.signature(dataset_cls).parameters)

        dataset_args['image_size'] = train_config.image_size  # explicitly use training image size for evaluation

        if model.__class__.__name__ == 'PFENetWrapper':
            dataset_args['image_size'] = config.image_size

        log.info('init dataset', str(dataset_cls))
        dataset = dataset_cls(**dataset_args)

        log.info(f'Score on {model.__class__.__name__} on {dataset_cls.__name__}')

        data_loader = torch.utils.data.DataLoader(dataset, batch_size=config.batch_size, shuffle=config.shuffle)

        # explicitly set prompts
        if config.prompt == 'plain':
            model.prompt_list = ['{}']
        elif config.prompt == 'fixed':
            model.prompt_list = ['a photo of a {}.']
        elif config.prompt == 'shuffle':
            model.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
        elif config.prompt == 'shuffle_clip':
            from models.clip_prompts import imagenet_templates
            model.prompt_list = imagenet_templates

        config.assume_no_unused_keys(exceptions=['max_iterations'])

        t_start = time.time()

        with torch.no_grad():  # TODO: switch to inference_mode (torch 1.9)
            i, losses = 0, []
            for data_x, data_y in data_loader:

                data_x = [x.cuda() if isinstance(x, torch.Tensor) else x for x in data_x]
                data_y = [x.cuda() if isinstance(x, torch.Tensor) else x for x in data_y]

                if model.__class__.__name__ in {'ConditionBase4', 'PFENetWrapper'}:
                    pred, = model(data_x[0], data_x[1], data_x[2])
                    visual_q = None
                else:
                    pred, visual_q, _, _  = model(data_x[0], data_x[1], return_features=True)

                loss = loss_fn(pred, data_y[0])

                metric.add([pred], data_y)

                losses += [float(loss)]

                i += 1
                if config.max_iterations and i >= config.max_iterations:
                    break

        # scores = {m: s for m, s in zip(metric.names(), metric.value())}
        scores = metric.scores()

        keys = set(scores.keys())
        if dataset.negative_prob > 0 and 'mIoU' in keys:
            keys.remove('mIoU')

        name_mask = dataset.mask.replace('text_label', 'txt')[:3]
        name_neg = '' if dataset.negative_prob == 0 else '_' + str(dataset.negative_prob)
        
        score_name = config.name if 'name' in config else f'{dataset_name}_{name_mask}{name_neg}'

        scores = {score_name: {k: v for k,v in scores.items() if k in keys}}
        scores[score_name].update({'test_loss': np.mean(losses)})

        log.info(f'Evaluation took {time.time() - t_start:.1f}s')

        return scores
    else:
        raise ValueError('invalid test dataset')









if __name__ == '__main__':
    main()