Spaces:
Runtime error
Runtime error
File size: 24,001 Bytes
028bd43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
##!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Time : 2024-01-29
# @Author : Junjie He
import json
import os
import time
import uuid
import cv2
import gradio as gr
import numpy as np
from PIL import Image
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from src.generation import call_generation
from src.util import upload_np_2_oss, upload_json_string_2_oss, upload_preprocess, merge_images
universal_matting = pipeline(Tasks.universal_matting, model='damo/cv_unet_universal-matting')
img = "assets/image_gallery_en/"
files = os.listdir(img)
files = [file for file in files if file.lower().endswith(('.png', '.jpg', '.jpeg'))]
files = sorted(files)
basic_usage = []
showcases = []
for idx, name in enumerate(files):
temp = os.path.join(os.path.dirname(__file__), img, name)
if idx < 4:
basic_usage.append(temp)
else:
showcases.append(temp)
# - - - - - examples - - - - - #
ep = "assets/examples"
# Layout, Style, Color, Subject, Prompt,Strict Layout Edge,Layout Content Scale, Automatic Image Matting
image_examples = [
[0, f"{ep}/00_layout.png", f"{ep}/empty.png", f"{ep}/empty.png", f"{ep}/empty.png", "", True, 0., True],
[1, f"{ep}/01_layout.png", f"{ep}/empty.png", f"{ep}/empty.png", f"{ep}/empty.png", "", True, 0.8, True],
[2, f"{ep}/empty.png", f"{ep}/02_style.png", f"{ep}/empty.png", f"{ep}/empty.png", "", True, 0.8, True],
[3, f"{ep}/empty.png", f"{ep}/03_style.png", f"{ep}/empty.png", f"{ep}/empty.png", "", True, 0.8, True],
[4, f"{ep}/empty.png", f"{ep}/empty.png", f"{ep}/04_color.png", f"{ep}/empty.png", "A moose, Merry Christmas", True, 0.8, True],
[5, f"{ep}/empty.png", f"{ep}/empty.png", f"{ep}/05_color.png", f"{ep}/empty.png", "A photo about cherry blossom",
True, 0.8, True],
[6, f"{ep}/06_layout.png", f"{ep}/06_style.jpeg", f"{ep}/empty.png", f"{ep}/empty.png", "", True, 0.8, True],
[7, f"{ep}/07_layout.jpeg", f"{ep}/07_style.jpeg", f"{ep}/empty.png", f"{ep}/empty.png", "", True, 0.8, True],
[8, f"{ep}/empty.png", f"{ep}/08_style.png", f"{ep}/08_color.jpeg", f"{ep}/empty.png", "", True, 0.8, True],
[9, f"{ep}/empty.png", f"{ep}/09_style.png", f"{ep}/empty.png", f"{ep}/base_image1.jpeg", "", True, 0.8, True],
[10, f"{ep}/10_layout.png", f"{ep}/10_style.png", f"{ep}/empty.png", f"{ep}/base_image2.png", "", True, 0.8, False],
[11, f"{ep}/11_layout.png", f"{ep}/empty.png", f"{ep}/empty.png", f"{ep}/base_image4.png", "", False, 0.8, False],
[12, f"{ep}/12_layout.png", f"{ep}/empty.png", f"{ep}/empty.png", f"{ep}/base_image3.png", "", False, 0.8, False],
]
example_images = [
[0, f"{ep}/layout_image1.jpeg", None, None, None],
[1, f"{ep}/layout_image1.jpeg", None, None, None],
[2, None, f"{ep}/style_image1.jpeg", None, None],
[3, None, f"{ep}/style_image1.jpeg", None, None],
[4, None, None, f"{ep}/color_image1.jpeg", None],
[5, None, None, f"{ep}/color_image3.jpeg", None],
[6, f"{ep}/layout_image2.jpeg", f"{ep}/style_image2.jpeg", None, None],
[7, f"{ep}/layout_image3.jpeg", f"{ep}/style_image3.jpeg", None, None],
[8, None, f"{ep}/style_image4.jpeg", f"{ep}/color_image2.jpeg", None],
[9, None, f"{ep}/style_image6.jpeg", None, f"{ep}/09_base.png"],
[10, f"{ep}/layout_image5.jpeg", f"{ep}/style_image5.jpeg", None, f"{ep}/10_base.png"],
[11, f"{ep}/layout_image7.jpeg", None, None, f"{ep}/11_base.png"],
[12, f"{ep}/layout_image6.jpeg", None, None, f"{ep}/12_base.png"],
]
example_masks = [
[0, None, None, None],
[1, f"{ep}/layout_image1_mask.png", None, None],
[2, None, f"{ep}/style_image1_mask.png", None],
[3, None, f"{ep}/style_image1_mask2.png", None],
[4, None, None, None],
[5, None, None, f"{ep}/color_image3_mask.png"],
[6, None, None, None],
[7, None, None, None],
[8, None, None, None],
[9, None, f"{ep}/style_image6_mask.png", None],
[10, f"{ep}/layout_image5_mask.png", None, None],
[11, None, None, None],
[12, f"{ep}/layout_image6_mask.png", None, None],
]
def process_example(example_idx, pil_layout_image, pil_style_image, pil_color_image, pil_base_image_rgba,
prompt, strict_edge, layout_scale, preprocess_base_image):
_, layout_image, style_image, color_image, base_image_rgba = example_images[example_idx]
_, layout_mask, style_mask, color_mask = example_masks[example_idx]
pil_layout_image = None if layout_image is None else pil_layout_image
pil_style_image = None if style_image is None else pil_style_image
pil_color_image = None if color_image is None else pil_color_image
pil_base_image_rgba = None if base_image_rgba is None else pil_base_image_rgba
return pil_layout_image, layout_mask, pil_style_image, style_mask, pil_color_image, color_mask, \
pil_base_image_rgba, prompt, strict_edge, layout_scale, preprocess_base_image
def process(pil_base_image_rgba=None, preprocess_base_image=False,
pil_layout_image_dict=None, layout_scale=1.0, edge_consistency=0.5,
strict_edge=False,
pil_color_image_dict=None, color_scale=1.0,
pil_style_image_dict=None, style_scale=1.0, prompt="best quality", negative_prompt="",
pil_layout_mask=None, pil_style_mask=None, pil_color_mask=None):
request_id = time.strftime('%Y%m%d-', time.localtime(time.time())) + str(uuid.uuid4())
output_aspect_ratio = 1.
matting_flag = False
if pil_base_image_rgba is None:
base_image_url = ""
pil_fg_mask = None
else:
if preprocess_base_image:
matting_flag = True
orig_image = np.array(pil_base_image_rgba)
orig_alpha = np.array(pil_base_image_rgba)[..., -1]
matting_alpha = universal_matting(pil_base_image_rgba)[OutputKeys.OUTPUT_IMG][..., -1]
orig_image[..., -1] = ((matting_alpha > 200) * (orig_alpha > 200) * 255.).astype(np.uint8)
pil_base_image_rgba = Image.fromarray(orig_image)
pil_fg_mask = pil_base_image_rgba.split()[-1]
w, h = pil_base_image_rgba.size
output_aspect_ratio = max(1.0 * w / h, 1.0 * h / w)
if output_aspect_ratio > 2:
raise gr.Error("Input of subject images with aspect ratio exceeding 2 is not supported")
if min(w, h) > 1536:
raise gr.Error("Input of subject images with the shorter side exceeding 1536 pixels is not supported")
base_image_url = upload_np_2_oss(np.array(pil_base_image_rgba), request_id + "_base.png")
if pil_layout_image_dict is None:
layout_image_url = ""
else:
np_layout_image = np.array(pil_layout_image_dict["image"].convert("RGBA"))
np_layout_image, np_layout_alpha = np_layout_image[..., :3], np_layout_image[..., 3]
np_layout_mask = np.array(pil_layout_image_dict["mask"].convert("L"))
if pil_layout_mask is None:
np_layout_mask = ((np_layout_alpha > 127) * (np_layout_mask < 127) * 255.).astype(np.uint8)
else:
np_layout_mask = ((np_layout_alpha > 127) * (np_layout_mask < 127) *
(np.array(pil_layout_mask) > 127) * 255.).astype(np.uint8)
layout_image_url = upload_np_2_oss(
np.concatenate([np_layout_image, np_layout_mask[..., None]], axis=-1), request_id + "_layout.png"
)
if pil_base_image_rgba is None:
h, w, c = np_layout_image.shape
output_aspect_ratio = max(1.0 * w / h, 1.0 * h / w)
if output_aspect_ratio > 2:
raise gr.Error("Input of layout images with aspect ratio exceeding 2 is not supported")
if min(w, h) > 1536:
raise gr.Error("Input of layout images with the shorter side exceeding 1536 pixels is not supported")
if pil_style_image_dict is None:
style_image_url = ""
else:
np_style_image = np.array(pil_style_image_dict["image"].convert("RGBA"))
np_style_image, np_style_alpha = np_style_image[..., :3], np_style_image[..., 3]
np_style_mask = np.array(pil_style_image_dict["mask"].convert("L"))
if pil_style_mask is None:
np_style_mask = ((np_style_alpha > 127) * (np_style_mask < 127) * 255.).astype(np.uint8)
else:
np_style_mask = ((np_style_alpha > 127) * (np_style_mask < 127) *
(np.array(pil_style_mask) > 127) * 255.).astype(np.uint8)
style_image_url = upload_np_2_oss(
np.concatenate([np_style_image, np_style_mask[..., None]], axis=-1), request_id + "_style.png"
)
if pil_color_image_dict is None:
color_image_url = ""
else:
np_color_image = np.array(pil_color_image_dict["image"].convert("RGBA"))
np_color_image, np_color_alpha = np_color_image[..., :3], np_color_image[..., 3]
np_color_mask = np.array(pil_color_image_dict["mask"].convert("L"))
if pil_color_mask is None:
np_color_mask = ((np_color_alpha > 127) * (np_color_mask < 127) * 255.).astype(np.uint8)
else:
np_color_mask = ((np_color_alpha > 127) * (np_color_mask < 127) *
(np.array(pil_color_mask) > 127) * 255.).astype(np.uint8)
color_image_url = upload_np_2_oss(
np.concatenate([np_color_image, np_color_mask[..., None]], axis=-1), request_id + "_color.png"
)
res = call_generation(base_image_url=base_image_url, layout_image_url=layout_image_url,
color_image_url=color_image_url, style_image_url=style_image_url,
strict_edge=int(strict_edge), layout_scale=int(layout_scale * 10),
edge_consistency=int(edge_consistency * 10), color_scale=int(color_scale * 10),
style_scale=int(style_scale * 10), prompt=prompt, negative_prompt=negative_prompt,
output_aspect_ratio=output_aspect_ratio)
for idx, r in enumerate(res):
upload_np_2_oss(np.array(r), request_id + f"_{idx}.jpg")
if matting_flag:
res.append(pil_base_image_rgba)
return res, request_id, True, pil_fg_mask
if __name__ == "__main__":
block = gr.Blocks(
title="TransferAnything",
css="assets/css/style.css",
theme=gr.themes.Soft(
radius_size=gr.themes.sizes.radius_none,
text_size=gr.themes.sizes.text_md
)).queue(concurrency_count=3)
with block:
with gr.Row():
with gr.Column():
gr.HTML(f"""
<div style="text-align: center;">
<h1> ImageSynthesizer: Enables a Versatile Visual Information Transfer for Creative Image Synthesis </h1>
</br>
<h3> ImageSynthesizer supports transferring various visual information from any area of any image to create new compositions, offering higher freedom and flexibility in image synthesis. Currently, it supports the transfer of layout, color, style, and pixel content, with more visual information transfer capabilities. </h3>
</br>
</div>
""")
#with gr.Tabs(elem_classes=["Tab"]):
# with gr.TabItem("Image Gallery"):
# gr.Gallery(label="Basic Usage", value=basic_usage, height=400, columns=4, object_fit="scale-down")
# gr.Gallery(label="Advanced Combinations", value=showcases, height=1200, columns=4, object_fit="scale-down")
# with gr.TabItem("Image Creation"):
with gr.Row():
with gr.Column(scale=1):
...
with gr.Column(scale=3):
gr.Image(value="assets/banner/banner.png", width=1024, show_label=False,
show_download_button=False)
with gr.Column(scale=1):
...
with gr.Accordion(label="🧭 Instructions:", open=True, elem_id="accordion"):
with gr.Row(equal_height=True):
# with gr.Row(elem_id="ShowCase"):
# gr.Image(value="assets/banner/ra.gif")
gr.Markdown("""
- ⭐️ <b>step1:</b> (Optional) Upload or select a set of images from the examples for the "Layout", "Style", and "Color" reference. Mix and match freely, no need to select all.
- ⭐️ <b>step2:</b> (Optional) Use brush to erase areas in the layout, style, and color reference images (if present) that you do not want transferred.
- ⭐️ <b>step3:</b> (Optional) Upload an RGBA image to the "Subject" tab, with the alpha channel indicating the subject you wish to preserve at the pixel level (or upload a regular RGB image and check the automatic image matting option, which will automatically segment the subject for you; <b>the default is the latter</b>).
- ⭐️ <b>step4:</b> Click "Run" to start the generation process.
- ⭐️ <b>step5:</b> (Optional) Additionally, prompt input is supported, as well as control over advanced parameters such as layout edge consistency and conditional weights. Feel free to try these features.
""")
# with gr.Row(equal_height=True):
with gr.Row():
with gr.Column(scale=1, min_width=160):
with gr.Tabs(elem_classes=["feedback"]):
with gr.TabItem("Layout (Optional)"):
pil_layout_image_dict = gr.ImageMask(source='upload', type="pil", show_label=False,
image_mode="RGBA")
pil_layout_image = gr.Image(interactive=False, type="pil", visible=False, label="Layout")
pil_layout_mask = gr.Image(interactive=False, type="pil", visible=False, label="Layout Mask",
image_mode="L")
with gr.Box():
with gr.Accordion(label="Layout Parameters", open=False, elem_id="accordion"):
with gr.TabItem("Layout Edge"):
strict_edge = gr.Checkbox(label="Strict", value=True)
strict_edge_mirror = gr.Checkbox(label="Strict Layout Edge", visible=False)
edge_consistency = gr.Slider(label="Degree of Consistency (If Not Strict)", minimum=0.0,
maximum=1.0,
step=0.1, value=0.8, interactive=True)
with gr.TabItem("Layout Content"):
layout_scale = gr.Slider(label="Scale", minimum=0.0, maximum=1.0, step=0.1,
value=0.8,
interactive=True)
layout_scale_mirror = gr.Slider(label="Layout Content Scale", visible=False)
with gr.Column(scale=1, min_width=160):
with gr.Tabs(elem_classes=["feedback"]):
with gr.TabItem("Style (Optional)"):
pil_style_image_dict = gr.ImageMask(source='upload', type="pil", show_label=False,
image_mode="RGBA")
pil_style_image = gr.Image(interactive=False, type="pil", visible=False, label="Style")
pil_style_mask = gr.Image(interactive=False, type="pil", visible=False, label="Style Mask",
image_mode="L")
with gr.Box():
with gr.Accordion(label="Style Parameters", open=False, elem_id="accordion"):
style_scale = gr.Slider(label="Scale", minimum=0.0, maximum=1.0, step=0.1,
value=0.8, interactive=True)
with gr.Column(scale=1, min_width=160):
with gr.Tabs(elem_classes=["feedback"]):
with gr.TabItem("Color (Optional, recommended for use with prompt)"):
pil_color_image_dict = gr.ImageMask(source='upload', type="pil", show_label=False,
image_mode="RGBA")
pil_color_image = gr.Image(interactive=False, type="pil", visible=False, label="Color")
pil_color_mask = gr.Image(interactive=False, type="pil", visible=False, label="Color Mask",
image_mode="L")
with gr.Box():
with gr.Accordion(label="Color Parameters", open=False, elem_id="accordion"):
color_scale = gr.Slider(label="Scale", minimum=0.0, maximum=1.0, step=0.1,
value=0.8, interactive=True)
with gr.Row():
with gr.Column(scale=1, min_width=160):
with gr.Tabs(elem_classes=["feedback"]):
with gr.TabItem("Subject (Optional)"):
pil_base_image_rgba = gr.Image(source='upload',
interactive=True, show_label=False,
type="pil", image_mode="RGBA", tool="editor")
pil_base_image_rgba_mirror = gr.Image(label="Subject", image_mode="RGBA", visible=False)
with gr.Box():
preprocess_base_image = gr.Checkbox(label="Automatic Image Matting", value=True)
pil_fg_mask = gr.Image(interactive=False, type="pil", image_mode="L", visible=False)
run_button = gr.Button("Run", elem_id="btn")
with gr.Accordion("", open=True, elem_id="accordion1"):
prompt = gr.Textbox(value="", label='Prompt', lines=1, interactive=True)
prompt_mirror = gr.Textbox(label='Prompt', visible=False)
negative_prompt = gr.Textbox(value="", label='Negative prompt', lines=1,
interactive=True)
with gr.Column(scale=2, min_width=160):
with gr.Tabs(elem_classes=["feedback"]):
with gr.TabItem("Outputs"):
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery",
preview=True)
recommend = gr.Button("Recommend results to Image Gallery", elem_id="recBut")
request_id = gr.State(value="")
gallery_flag = gr.State(value=False)
with gr.Row():
with gr.Box():
example_idx = gr.Slider(label="Index", visible=False, value=0)
example = gr.Examples(
label="Input Examples",
examples=image_examples,
inputs=[example_idx,
pil_layout_image, pil_style_image, pil_color_image, pil_base_image_rgba_mirror,
prompt_mirror, strict_edge_mirror, layout_scale_mirror, preprocess_base_image],
outputs=[pil_layout_image_dict, pil_layout_mask, pil_style_image_dict, pil_style_mask,
pil_color_image_dict, pil_color_mask, pil_base_image_rgba,
prompt, strict_edge, layout_scale, preprocess_base_image],
fn=process_example,
run_on_click=True,
examples_per_page=20
)
with gr.Column():
gr.HTML(f"""
</br>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href='https://aigcdesigngroup.github.io/transfer-anything/'><img src='https://img.shields.io/badge/Project_Page-TransferAnything-green' alt='Project Page'></a>
</div>
</br>
""")
def upload_to_img_gallery(pil_base_image_rgba, pil_layout_image_dict, pil_style_image_dict,
pil_color_image_dict, pil_fg_mask, prompt, negative_prompt, res, re_id, flag,
strict_edge, edge_consistency, layout_scale, style_scale, color_scale,
preprocess_base_image):
if flag:
np_out_base_image, np_out_layout_image, np_out_style_image, np_out_color_image = upload_preprocess(
pil_base_image_rgba, pil_layout_image_dict, pil_style_image_dict, pil_color_image_dict, pil_fg_mask)
np_out_images = [np_out_base_image, np_out_layout_image, np_out_style_image, np_out_color_image]
for idx, r in enumerate(res):
if idx < 4:
r = cv2.imread(r['name'])
r = cv2.cvtColor(r, cv2.COLOR_BGR2RGB)
upload_np_2_oss(merge_images(*np_out_images, r, prompt, negative_prompt),
name=re_id + f"_merge_{idx}.jpg", gallery=True)
config = dict(
strict_edge=strict_edge,
edge_consistency=edge_consistency,
layout_scale=layout_scale,
style_scale=style_scale,
color_scale=color_scale,
preprocess_base_image=preprocess_base_image
)
upload_json_string_2_oss(json.dumps(config), name=re_id + f"_config.txt", gallery=True)
flag = False
gr.Info("Images have been uploaded and await review.")
else:
gr.Info("No images to recommend, or already suggested once.")
return flag
recommend.click(
upload_to_img_gallery,
[pil_base_image_rgba, pil_layout_image_dict, pil_style_image_dict, pil_color_image_dict, pil_fg_mask,
prompt, negative_prompt, result_gallery, request_id, gallery_flag, strict_edge, edge_consistency,
layout_scale, style_scale, color_scale, preprocess_base_image],
[gallery_flag]
)
ips = [pil_base_image_rgba, preprocess_base_image,
pil_layout_image_dict, layout_scale, edge_consistency, strict_edge,
pil_color_image_dict, color_scale,
pil_style_image_dict, style_scale, prompt, negative_prompt,
pil_layout_mask, pil_style_mask, pil_color_mask]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery, request_id, gallery_flag, pil_fg_mask])
block.launch(share=True)
|