Colorizer_Models / colorizers /siggraph17.py
nightfury's picture
Added init files
680cb9b
raw
history blame
7.34 kB
import torch
import torch.nn as nn
from .base_color import *
class SIGGRAPHGenerator(BaseColor):
def __init__(self, norm_layer=nn.BatchNorm2d, classes=529):
super(SIGGRAPHGenerator, self).__init__()
# Conv1
model1=[nn.Conv2d(4, 64, kernel_size=3, stride=1, padding=1, bias=True),]
model1+=[nn.ReLU(True),]
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=True),]
model1+=[nn.ReLU(True),]
model1+=[norm_layer(64),]
# add a subsampling operation
# Conv2
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
model2+=[nn.ReLU(True),]
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
model2+=[nn.ReLU(True),]
model2+=[norm_layer(128),]
# add a subsampling layer operation
# Conv3
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),]
model3+=[nn.ReLU(True),]
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
model3+=[nn.ReLU(True),]
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
model3+=[nn.ReLU(True),]
model3+=[norm_layer(256),]
# add a subsampling layer operation
# Conv4
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),]
model4+=[nn.ReLU(True),]
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
model4+=[nn.ReLU(True),]
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
model4+=[nn.ReLU(True),]
model4+=[norm_layer(512),]
# Conv5
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
model5+=[nn.ReLU(True),]
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
model5+=[nn.ReLU(True),]
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
model5+=[nn.ReLU(True),]
model5+=[norm_layer(512),]
# Conv6
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
model6+=[nn.ReLU(True),]
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
model6+=[nn.ReLU(True),]
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
model6+=[nn.ReLU(True),]
model6+=[norm_layer(512),]
# Conv7
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
model7+=[nn.ReLU(True),]
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
model7+=[nn.ReLU(True),]
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
model7+=[nn.ReLU(True),]
model7+=[norm_layer(512),]
# Conv7
model8up=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True)]
model3short8=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
model8=[nn.ReLU(True),]
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
model8+=[nn.ReLU(True),]
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
model8+=[nn.ReLU(True),]
model8+=[norm_layer(256),]
# Conv9
model9up=[nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=True),]
model2short9=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
# add the two feature maps above
model9=[nn.ReLU(True),]
model9+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
model9+=[nn.ReLU(True),]
model9+=[norm_layer(128),]
# Conv10
model10up=[nn.ConvTranspose2d(128, 128, kernel_size=4, stride=2, padding=1, bias=True),]
model1short10=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
# add the two feature maps above
model10=[nn.ReLU(True),]
model10+=[nn.Conv2d(128, 128, kernel_size=3, dilation=1, stride=1, padding=1, bias=True),]
model10+=[nn.LeakyReLU(negative_slope=.2),]
# classification output
model_class=[nn.Conv2d(256, classes, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),]
# regression output
model_out=[nn.Conv2d(128, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),]
model_out+=[nn.Tanh()]
self.model1 = nn.Sequential(*model1)
self.model2 = nn.Sequential(*model2)
self.model3 = nn.Sequential(*model3)
self.model4 = nn.Sequential(*model4)
self.model5 = nn.Sequential(*model5)
self.model6 = nn.Sequential(*model6)
self.model7 = nn.Sequential(*model7)
self.model8up = nn.Sequential(*model8up)
self.model8 = nn.Sequential(*model8)
self.model9up = nn.Sequential(*model9up)
self.model9 = nn.Sequential(*model9)
self.model10up = nn.Sequential(*model10up)
self.model10 = nn.Sequential(*model10)
self.model3short8 = nn.Sequential(*model3short8)
self.model2short9 = nn.Sequential(*model2short9)
self.model1short10 = nn.Sequential(*model1short10)
self.model_class = nn.Sequential(*model_class)
self.model_out = nn.Sequential(*model_out)
self.upsample4 = nn.Sequential(*[nn.Upsample(scale_factor=4, mode='bilinear'),])
self.softmax = nn.Sequential(*[nn.Softmax(dim=1),])
def forward(self, input_A, input_B=None, mask_B=None):
if(input_B is None):
input_B = torch.cat((input_A*0, input_A*0), dim=1)
if(mask_B is None):
mask_B = input_A*0
conv1_2 = self.model1(torch.cat((self.normalize_l(input_A),self.normalize_ab(input_B),mask_B),dim=1))
conv2_2 = self.model2(conv1_2[:,:,::2,::2])
conv3_3 = self.model3(conv2_2[:,:,::2,::2])
conv4_3 = self.model4(conv3_3[:,:,::2,::2])
conv5_3 = self.model5(conv4_3)
conv6_3 = self.model6(conv5_3)
conv7_3 = self.model7(conv6_3)
conv8_up = self.model8up(conv7_3) + self.model3short8(conv3_3)
conv8_3 = self.model8(conv8_up)
conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2)
conv9_3 = self.model9(conv9_up)
conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2)
conv10_2 = self.model10(conv10_up)
out_reg = self.model_out(conv10_2)
conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2)
conv9_3 = self.model9(conv9_up)
conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2)
conv10_2 = self.model10(conv10_up)
out_reg = self.model_out(conv10_2)
return self.unnormalize_ab(out_reg)
def siggraph17(pretrained=True):
model = SIGGRAPHGenerator()
if(pretrained):
import torch.utils.model_zoo as model_zoo
model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/siggraph17-df00044c.pth',map_location='cpu',check_hash=True))
return model