File size: 7,339 Bytes
680cb9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
import torch.nn as nn

from .base_color import *

class SIGGRAPHGenerator(BaseColor):
    def __init__(self, norm_layer=nn.BatchNorm2d, classes=529):
        super(SIGGRAPHGenerator, self).__init__()

        # Conv1
        model1=[nn.Conv2d(4, 64, kernel_size=3, stride=1, padding=1, bias=True),]
        model1+=[nn.ReLU(True),]
        model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=True),]
        model1+=[nn.ReLU(True),]
        model1+=[norm_layer(64),]
        # add a subsampling operation

        # Conv2
        model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
        model2+=[nn.ReLU(True),]
        model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
        model2+=[nn.ReLU(True),]
        model2+=[norm_layer(128),]
        # add a subsampling layer operation

        # Conv3
        model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),]
        model3+=[nn.ReLU(True),]
        model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
        model3+=[nn.ReLU(True),]
        model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
        model3+=[nn.ReLU(True),]
        model3+=[norm_layer(256),]
        # add a subsampling layer operation

        # Conv4
        model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),]
        model4+=[nn.ReLU(True),]
        model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
        model4+=[nn.ReLU(True),]
        model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
        model4+=[nn.ReLU(True),]
        model4+=[norm_layer(512),]

        # Conv5
        model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
        model5+=[nn.ReLU(True),]
        model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
        model5+=[nn.ReLU(True),]
        model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
        model5+=[nn.ReLU(True),]
        model5+=[norm_layer(512),]

        # Conv6
        model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
        model6+=[nn.ReLU(True),]
        model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
        model6+=[nn.ReLU(True),]
        model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
        model6+=[nn.ReLU(True),]
        model6+=[norm_layer(512),]

        # Conv7
        model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
        model7+=[nn.ReLU(True),]
        model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
        model7+=[nn.ReLU(True),]
        model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
        model7+=[nn.ReLU(True),]
        model7+=[norm_layer(512),]

        # Conv7
        model8up=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True)]
        model3short8=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]

        model8=[nn.ReLU(True),]
        model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
        model8+=[nn.ReLU(True),]
        model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
        model8+=[nn.ReLU(True),]
        model8+=[norm_layer(256),]

        # Conv9
        model9up=[nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=True),]
        model2short9=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
        # add the two feature maps above        

        model9=[nn.ReLU(True),]
        model9+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
        model9+=[nn.ReLU(True),]
        model9+=[norm_layer(128),]

        # Conv10
        model10up=[nn.ConvTranspose2d(128, 128, kernel_size=4, stride=2, padding=1, bias=True),]
        model1short10=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
        # add the two feature maps above

        model10=[nn.ReLU(True),]
        model10+=[nn.Conv2d(128, 128, kernel_size=3, dilation=1, stride=1, padding=1, bias=True),]
        model10+=[nn.LeakyReLU(negative_slope=.2),]

        # classification output
        model_class=[nn.Conv2d(256, classes, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),]

        # regression output
        model_out=[nn.Conv2d(128, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),]
        model_out+=[nn.Tanh()]

        self.model1 = nn.Sequential(*model1)
        self.model2 = nn.Sequential(*model2)
        self.model3 = nn.Sequential(*model3)
        self.model4 = nn.Sequential(*model4)
        self.model5 = nn.Sequential(*model5)
        self.model6 = nn.Sequential(*model6)
        self.model7 = nn.Sequential(*model7)
        self.model8up = nn.Sequential(*model8up)
        self.model8 = nn.Sequential(*model8)
        self.model9up = nn.Sequential(*model9up)
        self.model9 = nn.Sequential(*model9)
        self.model10up = nn.Sequential(*model10up)
        self.model10 = nn.Sequential(*model10)
        self.model3short8 = nn.Sequential(*model3short8)
        self.model2short9 = nn.Sequential(*model2short9)
        self.model1short10 = nn.Sequential(*model1short10)

        self.model_class = nn.Sequential(*model_class)
        self.model_out = nn.Sequential(*model_out)

        self.upsample4 = nn.Sequential(*[nn.Upsample(scale_factor=4, mode='bilinear'),])
        self.softmax = nn.Sequential(*[nn.Softmax(dim=1),])

    def forward(self, input_A, input_B=None, mask_B=None):
        if(input_B is None):
            input_B = torch.cat((input_A*0, input_A*0), dim=1)
        if(mask_B is None):
            mask_B = input_A*0

        conv1_2 = self.model1(torch.cat((self.normalize_l(input_A),self.normalize_ab(input_B),mask_B),dim=1))
        conv2_2 = self.model2(conv1_2[:,:,::2,::2])
        conv3_3 = self.model3(conv2_2[:,:,::2,::2])
        conv4_3 = self.model4(conv3_3[:,:,::2,::2])
        conv5_3 = self.model5(conv4_3)
        conv6_3 = self.model6(conv5_3)
        conv7_3 = self.model7(conv6_3)

        conv8_up = self.model8up(conv7_3) + self.model3short8(conv3_3)
        conv8_3 = self.model8(conv8_up)
        conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2)
        conv9_3 = self.model9(conv9_up)
        conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2)
        conv10_2 = self.model10(conv10_up)
        out_reg = self.model_out(conv10_2)

        conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2)
        conv9_3 = self.model9(conv9_up)
        conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2)
        conv10_2 = self.model10(conv10_up)
        out_reg = self.model_out(conv10_2)

        return self.unnormalize_ab(out_reg)

def siggraph17(pretrained=True):
    model = SIGGRAPHGenerator()
    if(pretrained):
        import torch.utils.model_zoo as model_zoo
        model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/siggraph17-df00044c.pth',map_location='cpu',check_hash=True))
    return model