import torch import torch.nn as nn from .base_color import * class SIGGRAPHGenerator(BaseColor): def __init__(self, norm_layer=nn.BatchNorm2d, classes=529): super(SIGGRAPHGenerator, self).__init__() # Conv1 model1=[nn.Conv2d(4, 64, kernel_size=3, stride=1, padding=1, bias=True),] model1+=[nn.ReLU(True),] model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=True),] model1+=[nn.ReLU(True),] model1+=[norm_layer(64),] # add a subsampling operation # Conv2 model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),] model2+=[nn.ReLU(True),] model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),] model2+=[nn.ReLU(True),] model2+=[norm_layer(128),] # add a subsampling layer operation # Conv3 model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),] model3+=[nn.ReLU(True),] model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] model3+=[nn.ReLU(True),] model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] model3+=[nn.ReLU(True),] model3+=[norm_layer(256),] # add a subsampling layer operation # Conv4 model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),] model4+=[nn.ReLU(True),] model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] model4+=[nn.ReLU(True),] model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] model4+=[nn.ReLU(True),] model4+=[norm_layer(512),] # Conv5 model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] model5+=[nn.ReLU(True),] model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] model5+=[nn.ReLU(True),] model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] model5+=[nn.ReLU(True),] model5+=[norm_layer(512),] # Conv6 model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] model6+=[nn.ReLU(True),] model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] model6+=[nn.ReLU(True),] model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] model6+=[nn.ReLU(True),] model6+=[norm_layer(512),] # Conv7 model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] model7+=[nn.ReLU(True),] model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] model7+=[nn.ReLU(True),] model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] model7+=[nn.ReLU(True),] model7+=[norm_layer(512),] # Conv7 model8up=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True)] model3short8=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] model8=[nn.ReLU(True),] model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] model8+=[nn.ReLU(True),] model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] model8+=[nn.ReLU(True),] model8+=[norm_layer(256),] # Conv9 model9up=[nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=True),] model2short9=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),] # add the two feature maps above model9=[nn.ReLU(True),] model9+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),] model9+=[nn.ReLU(True),] model9+=[norm_layer(128),] # Conv10 model10up=[nn.ConvTranspose2d(128, 128, kernel_size=4, stride=2, padding=1, bias=True),] model1short10=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),] # add the two feature maps above model10=[nn.ReLU(True),] model10+=[nn.Conv2d(128, 128, kernel_size=3, dilation=1, stride=1, padding=1, bias=True),] model10+=[nn.LeakyReLU(negative_slope=.2),] # classification output model_class=[nn.Conv2d(256, classes, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),] # regression output model_out=[nn.Conv2d(128, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),] model_out+=[nn.Tanh()] self.model1 = nn.Sequential(*model1) self.model2 = nn.Sequential(*model2) self.model3 = nn.Sequential(*model3) self.model4 = nn.Sequential(*model4) self.model5 = nn.Sequential(*model5) self.model6 = nn.Sequential(*model6) self.model7 = nn.Sequential(*model7) self.model8up = nn.Sequential(*model8up) self.model8 = nn.Sequential(*model8) self.model9up = nn.Sequential(*model9up) self.model9 = nn.Sequential(*model9) self.model10up = nn.Sequential(*model10up) self.model10 = nn.Sequential(*model10) self.model3short8 = nn.Sequential(*model3short8) self.model2short9 = nn.Sequential(*model2short9) self.model1short10 = nn.Sequential(*model1short10) self.model_class = nn.Sequential(*model_class) self.model_out = nn.Sequential(*model_out) self.upsample4 = nn.Sequential(*[nn.Upsample(scale_factor=4, mode='bilinear'),]) self.softmax = nn.Sequential(*[nn.Softmax(dim=1),]) def forward(self, input_A, input_B=None, mask_B=None): if(input_B is None): input_B = torch.cat((input_A*0, input_A*0), dim=1) if(mask_B is None): mask_B = input_A*0 conv1_2 = self.model1(torch.cat((self.normalize_l(input_A),self.normalize_ab(input_B),mask_B),dim=1)) conv2_2 = self.model2(conv1_2[:,:,::2,::2]) conv3_3 = self.model3(conv2_2[:,:,::2,::2]) conv4_3 = self.model4(conv3_3[:,:,::2,::2]) conv5_3 = self.model5(conv4_3) conv6_3 = self.model6(conv5_3) conv7_3 = self.model7(conv6_3) conv8_up = self.model8up(conv7_3) + self.model3short8(conv3_3) conv8_3 = self.model8(conv8_up) conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2) conv9_3 = self.model9(conv9_up) conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2) conv10_2 = self.model10(conv10_up) out_reg = self.model_out(conv10_2) conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2) conv9_3 = self.model9(conv9_up) conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2) conv10_2 = self.model10(conv10_up) out_reg = self.model_out(conv10_2) return self.unnormalize_ab(out_reg) def siggraph17(pretrained=True): model = SIGGRAPHGenerator() if(pretrained): import torch.utils.model_zoo as model_zoo model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/siggraph17-df00044c.pth',map_location='cpu',check_hash=True)) return model