File size: 7,081 Bytes
a255cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
829417b
a255cdf
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler

rng = np.random.default_rng(0)

X, y = datasets.load_digits(return_X_y=True)

X = StandardScaler().fit_transform(X)

# classify small against large digits
y = (y > 4).astype(int)

# l1_ratio = 0.5  # L1 weight in the Elastic-Net regularization

md_description = """
# L1 Penalty and Sparsity in Logistic Regression

Comparison of the sparsity (percentage of zero coefficients) of solutions when L1, L2 and Elastic-Net penalty are used for different values of C. We can see that large values of C give more freedom to the model. Conversely, smaller values of C constrain the model more. In the L1 penalty case, this leads to sparser solutions. As expected, the Elastic-Net penalty sparsity is between that of L1 and L2.

We classify 8x8 images of digits into two classes: 0-4 against 5-9. The visualization shows coefficients of the models for varying C.
"""


def make_regression(l1_ratio):
    fig, axes = plt.subplots(3, 3)

    # Set regularization parameter
    for i, (C, axes_row) in enumerate(zip((1, 0.1, 0.01), axes)):
        # Increase tolerance for short training time
        clf_l1_LR = LogisticRegression(C=C, penalty="l1", tol=0.01, solver="saga")
        clf_l2_LR = LogisticRegression(C=C, penalty="l2", tol=0.01, solver="saga")
        clf_en_LR = LogisticRegression(
            C=C, penalty="elasticnet", solver="saga", l1_ratio=l1_ratio, tol=0.01
        )
        clf_l1_LR.fit(X, y)
        clf_l2_LR.fit(X, y)
        clf_en_LR.fit(X, y)

        coef_l1_LR = clf_l1_LR.coef_.ravel()
        coef_l2_LR = clf_l2_LR.coef_.ravel()
        coef_en_LR = clf_en_LR.coef_.ravel()

        # coef_l1_LR contains zeros due to the
        # L1 sparsity inducing norm
        sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100
        sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100
        sparsity_en_LR = np.mean(coef_en_LR == 0) * 100

        print(f"C={C:.2f}")
        print(f"{'Sparsity with L1 penalty:':<40} {sparsity_l1_LR:2f}%")
        print(f"{'Sparsity with Elastic-Net penalty:':<40} {sparsity_en_LR:.2f}%")
        print(f"{'Sparsity with L2 penalty:':<40} {sparsity_l2_LR:.2f}%")
        print(f"{'Score with L1 penalty:':<40} {clf_l1_LR.score(X, y):.2f}")
        print(f"{'Score with Elastic-Net penalty:':<40} {clf_en_LR.score(X, y):.2f}")
        print(f"{'Score with L2 penalty:':<40} {clf_l2_LR.score(X, y):.2f}")

        log_out = f"""
        C={C:.2f}
        {'Sparsity with L1 penalty:':<40} {sparsity_l1_LR:2f}%
        {'Sparsity with Elastic-Net penalty:':<40} {sparsity_en_LR:.2f}%
        {'Sparsity with L2 penalty:':<40} {sparsity_l2_LR:.2f}%
        {'Score with L1 penalty:':<40} {clf_l1_LR.score(X, y):.2f}
        {'Score with Elastic-Net penalty:':<40} {clf_en_LR.score(X, y):.2f}
        {'Score with L2 penalty:':<40} {clf_l2_LR.score(X, y):.2f}
        """

        if i == 0:
            axes_row[0].set_title("L1 penalty")
            axes_row[1].set_title(f"Elastic-Net\nl1/l2_ratio = {l1_ratio}")
            axes_row[2].set_title("L2 penalty")

        for ax, coefs in zip(axes_row, [coef_l1_LR, coef_en_LR, coef_l2_LR]):
            ax.imshow(
                np.abs(coefs.reshape(8, 8)),
                interpolation="nearest",
                cmap="binary",
                vmax=1,
                vmin=0,
            )
            ax.set_xticks(())
            ax.set_yticks(())

        axes_row[0].set_ylabel(f"{C=}")

    return fig, log_out, make_example(l1_ratio)


def make_example(l1_ratio):
    return f"""
    With the following code you can reproduce this example with the current values of the sliders and the same data in a notebook:

    ```python
    import numpy as np
    import matplotlib.pyplot as plt

    from sklearn.linear_model import LogisticRegression
    from sklearn import datasets
    from sklearn.preprocessing import StandardScaler

    rng = np.random.default_rng(0)

    X, y = datasets.load_digits(return_X_y=True)

    X = StandardScaler().fit_transform(X)

    # classify small against large digits
    y = (y > 4).astype(int)

    l1_ratio = 0.5  # L1 weight in the Elastic-Net regularization

    fig, axes = plt.subplots(3, 3)

    # Set regularization parameter
    for i, (C, axes_row) in enumerate(zip((1, 0.1, 0.01), axes)):
        # Increase tolerance for short training time
        clf_l1_LR = LogisticRegression(C=C, penalty="l1", tol=0.01, solver="saga")
        clf_l2_LR = LogisticRegression(C=C, penalty="l2", tol=0.01, solver="saga")
        clf_en_LR = LogisticRegression(
            C=C, penalty="elasticnet", solver="saga", l1_ratio=l1_ratio, tol=0.01
        )
        clf_l1_LR.fit(X, y)
        clf_l2_LR.fit(X, y)
        clf_en_LR.fit(X, y)

        coef_l1_LR = clf_l1_LR.coef_.ravel()
        coef_l2_LR = clf_l2_LR.coef_.ravel()
        coef_en_LR = clf_en_LR.coef_.ravel()

        # coef_l1_LR contains zeros due to the
        # L1 sparsity inducing norm

        sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100
        sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100
        sparsity_en_LR = np.mean(coef_en_LR == 0) * 100

        print(f"C={{C:.2f}}")
        print(f"{{'Sparsity with L1 penalty:':<40}} {{sparsity_l1_LR:2f}}%\")
        print(f"{{'Sparsity with Elastic-Net penalty:':<40}} {{sparsity_en_LR:.2f}}%")
        print(f"{{'Sparsity with L2 penalty:':<40}} {{sparsity_l2_LR:.2f}}%")
        print(f"{{'Score with L1 penalty:':<40}} {{clf_l1_LR.score(X, y):.2f}}")
        print(f"{{'Score with Elastic-Net penalty:':<40}} {{clf_en_LR.score(X, y):.2f}}")
        print(f"{{'Score with L2 penalty:':<40}} {{clf_l2_LR.score(X, y):.2f}}")

        if i == 0:
            axes_row[0].set_title("L1 penalty")
            axes_row[1].set_title(f"Elastic-Net\\nl1/l2_ratio = {l1_ratio}")
            axes_row[2].set_title("L2 penalty")

        for ax, coefs in zip(axes_row, [coef_l1_LR, coef_en_LR, coef_l2_LR]):
            ax.imshow(
                np.abs(coefs.reshape(8, 8)),
                interpolation="nearest",
                cmap="binary",
                vmax=1,
                vmin=0,
            )
            ax.set_xticks(())
            ax.set_yticks(())

        axes_row[0].set_ylabel(f"{{C=}}")
    plt.show()
    ```
    """


with gr.Blocks() as demo:
    with gr.Row():
        gr.Markdown(md_description)
    with gr.Row():
        with gr.Column():
            ratio_slider = gr.Slider(minimum=0, maximum=1, label="L1/L2 ratio", step=0.1, value=0.5)
            button = gr.Button(value="Generate")
        with gr.Column():
            plot = gr.Plot(label="Output")
            log = gr.Markdown("", label="Log")

    with gr.Row():
        example = gr.Markdown(make_example(ratio_slider.value))
        button.click(make_regression, inputs=[ratio_slider], outputs=[plot, log, example])
        ratio_slider.change(fn=make_regression, inputs=[ratio_slider], outputs=[plot, log, example])

demo.launch()