File size: 6,538 Bytes
8778cfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import numpy as np

from .downloader import load_trained_model
from ..parse_base import BaseParser, BaseInputExample
from .spacy_extensions import ConstituentData, NonConstituentException

import torch


class PartialConstituentData:
    def __init__(self):
        self.starts = [np.array([], dtype=int)]
        self.ends = [np.array([], dtype=int)]
        self.labels = [np.array([], dtype=int)]

    def finalize(self, doc, label_vocab):
        self.starts = np.hstack(self.starts)
        self.ends = np.hstack(self.ends)
        self.labels = np.hstack(self.labels)

        # TODO(nikita): Python for loops aren't very fast
        loc_to_constituent = np.full(len(doc), -1, dtype=int)
        prev = None
        for position in range(self.starts.shape[0]):
            if self.starts[position] != prev:
                prev = self.starts[position]
                loc_to_constituent[self.starts[position]] = position

        return ConstituentData(
            self.starts, self.ends, self.labels, loc_to_constituent, label_vocab
        )


class SentenceWrapper(BaseInputExample):
    TEXT_NORMALIZATION_MAPPING = {
        "`": "'",
        "«": '"',
        "»": '"',
        "‘": "'",
        "’": "'",
        "“": '"',
        "”": '"',
        "„": '"',
        "‹": "'",
        "›": "'",
        "—": "--",  # em dash
    }

    def __init__(self, spacy_sent):
        self.sent = spacy_sent

    @property
    def words(self):
        return [
            self.TEXT_NORMALIZATION_MAPPING.get(token.text, token.text)
            for token in self.sent
        ]

    @property
    def space_after(self):
        return [bool(token.whitespace_) for token in self.sent]

    @property
    def tree(self):
        return None

    def leaves(self):
        return self.words

    def pos(self):
        return [(word, "UNK") for word in self.words]


class BeneparComponent:
    """
    Berkeley Neural Parser (benepar) component for spaCy.

    Sample usage:
    >>> nlp = spacy.load('en_core_web_md')
    >>> if spacy.__version__.startswith('2'):
            nlp.add_pipe(BeneparComponent("benepar_en3"))
        else:
            nlp.add_pipe("benepar", config={"model": "benepar_en3"})
    >>> doc = nlp("The quick brown fox jumps over the lazy dog.")
    >>> sent = list(doc.sents)[0]
    >>> print(sent._.parse_string)

    This component is only responsible for constituency parsing and (for some
    trained models) part-of-speech tagging. It should be preceded in the
    pipeline by other components that can, at minimum, perform tokenization and
    sentence segmentation.
    """

    name = "benepar"

    def __init__(
        self,
        name,
        subbatch_max_tokens=500,
        disable_tagger=False,
        batch_size="ignored",
    ):
        """Load a trained parser model.

        Args:
            name (str): Model name, or path to pytorch saved model
            subbatch_max_tokens (int): Maximum number of tokens to process in
                each batch
            disable_tagger (bool, default False): Unless disabled, the parser
                will set predicted part-of-speech tags for the document,
                overwriting any existing tags provided by spaCy models or
                previous pipeline steps. This option has no effect for parser
                models that do not have a part-of-speech tagger built in.
            batch_size: deprecated and ignored; use subbatch_max_tokens instead
        """
        self._parser = load_trained_model(name)
        if torch.cuda.is_available():
            self._parser.cuda()

        self.subbatch_max_tokens = subbatch_max_tokens
        self.disable_tagger = disable_tagger

        self._label_vocab = self._parser.config["label_vocab"]
        label_vocab_size = max(self._label_vocab.values()) + 1
        self._label_from_index = [()] * label_vocab_size
        for label, i in self._label_vocab.items():
            if label:
                self._label_from_index[i] = tuple(label.split("::"))
            else:
                self._label_from_index[i] = ()
        self._label_from_index = tuple(self._label_from_index)

        if not self.disable_tagger:
            tag_vocab = self._parser.config["tag_vocab"]
            tag_vocab_size = max(tag_vocab.values()) + 1
            self._tag_from_index = [()] * tag_vocab_size
            for tag, i in tag_vocab.items():
                self._tag_from_index[i] = tag
            self._tag_from_index = tuple(self._tag_from_index)
        else:
            self._tag_from_index = None

    def __call__(self, doc):
        """Update the input document with predicted constituency parses."""
        # TODO(https://github.com/nikitakit/self-attentive-parser/issues/16): handle
        # tokens that consist entirely of whitespace.
        constituent_data = PartialConstituentData()
        wrapped_sents = [SentenceWrapper(sent) for sent in doc.sents]
        for sent, parse in zip(
            doc.sents,
            self._parser.parse(
                wrapped_sents,
                return_compressed=True,
                subbatch_max_tokens=self.subbatch_max_tokens,
            ),
        ):
            constituent_data.starts.append(parse.starts + sent.start)
            constituent_data.ends.append(parse.ends + sent.start)
            constituent_data.labels.append(parse.labels)

            if parse.tags is not None and not self.disable_tagger:
                for i, tag_id in enumerate(parse.tags):
                    sent[i].tag_ = self._tag_from_index[tag_id]

        doc._._constituent_data = constituent_data.finalize(doc, self._label_from_index)
        return doc


def create_benepar_component(
    nlp,
    name,
    model: str,
    subbatch_max_tokens: int,
    disable_tagger: bool,
):
    return BeneparComponent(
        model,
        subbatch_max_tokens=subbatch_max_tokens,
        disable_tagger=disable_tagger,
    )


def register_benepar_component_factory():
    # Starting with spaCy 3.0, nlp.add_pipe no longer directly accepts
    # BeneparComponent instances. We must instead register a component factory.
    import spacy

    if spacy.__version__.startswith("2"):
        return

    from spacy.language import Language

    Language.factory(
        "benepar",
        default_config={
            "subbatch_max_tokens": 500,
            "disable_tagger": False,
        },
        func=create_benepar_component,
    )


try:
    register_benepar_component_factory()
except ImportError:
    pass