File size: 16,175 Bytes
0cd6d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34c1316
0cd6d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1e7ead
0cd6d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1e7ead
0cd6d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419bf7b
0cd6d05
 
419bf7b
0cd6d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, STOKEStreamer
from threading import Thread
import json
import torch
import matplotlib.pyplot as plt
from matplotlib.colors import to_hex
import numpy as np
import os
import urllib.request
import zipfile


class MLP(torch.nn.Module):
    def __init__(self, input_dim, output_dim, hidden_dim=1024, layer_id=0, cuda=False):
        super(MLP, self).__init__()
        self.fc1 = torch.nn.Linear(input_dim, hidden_dim)  # Input layer to hidden layer
        self.fc3 = torch.nn.Linear(hidden_dim, output_dim)  # Hidden layer to output layer
        self.layer_id = layer_id
        if cuda:
            self.device = "cuda"
        else:
            self.device = "cpu"
        self.to(self.device)

    def forward(self, x):
        x = torch.flatten(x, start_dim=1)
        x = torch.relu(self.fc1(x))
        x = self.fc3(x)
        
        return torch.argmax(x, dim=-1).cpu().detach(), torch.softmax(x, dim=-1).cpu().detach()

def map_value_to_color(value, colormap_name='tab20c'):
    """
    Map a value between 0 and 1 to a CSS color using a Python colormap.

    Args:
        value (float): A value between 0 and 1.
        colormap_name (str): The name of the colormap to use (e.g., 'viridis').

    Returns:
        str: A CSS color string in the form 'rgb(r, g, b)'.
    """
    # Ensure the value is within the range [0, 1]
    value = np.clip(value, 0.0, 1.0)

    # Get the colormap
    colormap = plt.get_cmap(colormap_name)

    # Map the value to a color
    rgba_color = colormap(value)

    # Convert the RGBA color to CSS format
    css_color = to_hex(rgba_color)

    return css_color + "88"

@st.cache_resource
def get_model_and_tokenizer(name):
    # Load pre-trained model and tokenizer
    tok = AutoTokenizer.from_pretrained(name)
    model = AutoModelForCausalLM.from_pretrained(name)
    return model, tok

@st.cache_resource
def get_classifiers_for_model(att_size, emb_size, device, config_paths):
    classifier_token = None
    #print(config)
    config = {
        "classifier_token": json.load(open(os.path.join(config_paths["classifier_token"], "config.json"), "r")),
        "classifier_span": json.load(open(os.path.join(config_paths["classifier_span"], "config.json"), "r"))
    }

    layer_id = config["classifier_token"]["layer"]
    
    classifier_span = MLP(att_size, 2, hidden_dim=config["classifier_span"]["classifier_dim"]).to(device)
    classifier_span.load_state_dict(torch.load(os.path.join(config_paths["classifier_span"], "checkpoint.pt"), map_location=device))

    classifier_token = MLP(emb_size, len(config["classifier_token"]["label_map"]), layer_id=layer_id, hidden_dim=config["classifier_token"]["classifier_dim"]).to(device)
    classifier_token.load_state_dict(torch.load(os.path.join(config_paths["classifier_token"], "checkpoint.pt"), map_location=device))

    print(sum(p.numel() for p in classifier_span.parameters()), sum(p.numel() for p in classifier_token.parameters()))

    return classifier_span, classifier_token, config["classifier_token"]["label_map"]

def get_available_models():
    available_models = []
    for model_name in ["gpt2", "gpt2-xl"]:
        if os.path.isfile(f"checkpoints/{model_name}/config.json"):
            available_models.append(model_name)
    return available_models

def get_available_datasets(model_name):
    available_datasets = []
    config_path = f"checkpoints/{model_name}/config.json"
    if os.path.isfile(config_path):
        with open(config_path, "r") as f:
            config = json.load(f)
            # Assuming datasets are keys in config.json
            available_datasets = list(config.keys())
    return available_datasets

def download_and_extract_zip(url, extract_dir):
    # Determine the parent directory
    parent_dir = os.path.split(os.path.dirname(extract_dir))[-2]
    print(parent_dir)
    
    # Download the zip file to the parent directory
    zip_file_path = os.path.join(parent_dir, "data.zip")
    urllib.request.urlretrieve(url, zip_file_path)
    
    # Extract the zip file
    with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
        zip_ref.extractall(parent_dir)
    
    # Remove the zip file
    os.remove(zip_file_path)

def find_datasets_and_model_ids(root_dir):
    datasets = {}
    
    # Check if the root directory exists
    if not os.path.exists(root_dir):
        # If root directory doesn't exist, download a zip file and unpack it
        print("Root directory doesn't exist. Downloading zip file...")
        url = "https://drive.usercontent.google.com/download?id=1i5UkWikRZGhsbv21ZZSjEZl6-VwNC0lp&export=download&authuser=0&confirm=t&uuid=c33ef625-9ec8-4dbf-bdb0-ad6cabc70a33&at=APZUnTWWJSzU9pV2XV-sMPtbgdgj%3A1711096726305"  # Replace with your actual download URL
        download_and_extract_zip(url, root_dir)
        print("Zip file downloaded and unpacked successfully.")

    
    for root, dirs, files in os.walk(root_dir):
        if 'config.json' in files and 'stoke_config.json' in files:
            config_path = os.path.join(root, 'config.json')
            stoke_config_path = os.path.join(root, 'stoke_config.json')

            with open(config_path, 'r') as f:
                config_data = json.load(f)
                model_id = config_data.get('model_id')
                if model_id:
                    dataset_name = os.path.basename(os.path.dirname(config_path))

            with open(stoke_config_path, 'r') as f:
                stoke_config_data = json.load(f)
                if model_id:
                    dataset_name = os.path.basename(os.path.dirname(stoke_config_path))
                    datasets.setdefault(model_id, {})[dataset_name] = stoke_config_data
    
    return datasets


# Main content
st.title("Playground")

# Sidebar for model and dataset selection
with st.sidebar:
    st.subheader("Model and Dataset Selection")
    datasets = find_datasets_and_model_ids("data/")
    available_models = datasets.keys()
    print(datasets)
    if available_models:
        model_selection = st.selectbox("Select Model", available_models)
    else:
        st.error("No models available. Please check the file paths.")

    # Select dataset based on selected model
    available_datasets = datasets[model_selection]
    if available_datasets:
        dataset_selection = st.selectbox("Select Dataset", sorted(available_datasets))
    else:
        st.error("No datasets available for the selected model.")

    # Select dataset based on selected model
    available_configs = datasets[model_selection][dataset_selection]
    if available_configs:
        config_selection = st.selectbox("Select Config", available_configs.keys())
    else:
        st.error("No configs available for the selected dataset.")

# Load model and streamer based on selections
model, tok = get_model_and_tokenizer(model_selection)
if torch.cuda.is_available():
    model.cuda()
classifier_span, classifier_token, label_map = get_classifiers_for_model(model.config.n_head*model.config.n_layer, model.config.n_embd, model.device, datasets[model_selection][dataset_selection][config_selection])
streamer = STOKEStreamer(tok, classifier_token, classifier_span)

new_tags = label_map


def filter_spans(spans_and_values):
    if spans_and_values == []:
        return [], []
    # Create a dictionary to store spans based on their second index values
    span_dict = {}

    spans, values = [x[0] for x in spans_and_values], [x[1] for x in spans_and_values]

    # Iterate through the spans and update the dictionary with the highest value
    for span, value in zip(spans, values):
        start, end = span
        if start > end or end - start > 15 or start == 0:
            continue
        current_value = span_dict.get(end, None)

        if current_value is None or current_value[1] < value:
            span_dict[end] = (span, value)

    if span_dict == {}:
        return [], []
    # Extract the filtered spans and values
    filtered_spans, filtered_values = zip(*span_dict.values())

    return list(filtered_spans), list(filtered_values)

def remove_overlapping_spans(spans):
    # Sort the spans based on their end points
    sorted_spans = sorted(spans, key=lambda x: x[0][1])
    
    non_overlapping_spans = []
    last_end = float('-inf')
    
    # Iterate through the sorted spans
    for span in sorted_spans:
        start, end = span[0]
        value = span[1]
        
        # If the current span does not overlap with the previous one
        if start >= last_end:
            non_overlapping_spans.append(span)
            last_end = end
        else:
            # If it overlaps, choose the one with the highest value
            existing_span_index = -1
            for i, existing_span in enumerate(non_overlapping_spans):
                if existing_span[0][1] <= start:
                    existing_span_index = i
                    break
            if existing_span_index != -1 and non_overlapping_spans[existing_span_index][1] < value:
                non_overlapping_spans[existing_span_index] = span
    
    return non_overlapping_spans

def generate_html_no_overlap(tokenized_text, spans):
    current_index = 0
    html_content = ""

    for (span_start, span_end), value in spans:
        # Add text before the span
        html_content += "".join(tokenized_text[current_index:span_start])

        # Add the span with underlining
        html_content += "<b><u>"
        html_content += "".join(tokenized_text[span_start:span_end])
        html_content += "</u></b> "

        current_index = span_end

    # Add any remaining text after the last span
    html_content += "".join(tokenized_text[current_index:])

    return html_content


css = """
    <style>
    .highlight {
        display: inline;
    }
    .highlight::after {
        background-color: var(data-color);
    }
    .spanhighlight {
        padding: 2px 5px;
        border-radius: 5px;
    }
    .tooltip {
    position: relative;
    display: inline-block;
}

.tooltip::after {
    content: attr(data-tooltip-text); /* Set content from data-tooltip-text attribute */
    display: none;
    position: absolute;
    background-color: #333;
    color: #fff;
    padding: 5px;
    border-radius: 5px;
    bottom: 100%; /* Position it above the element */
    left: 50%;
    transform: translateX(-50%);
    width: auto;
    min-width: 120px;
    margin: 0 auto;
    text-align: center;
}

.tooltip:hover::after {
    display: block; /* Show the tooltip on hover */
}

.small-text {
    padding: 2px 5px;
    background-color: white;
    border-radius: 5px;
    font-size: xx-small;
    margin-left: 0.5em;
    vertical-align: 0.2em;
    font-weight: bold;
    color: grey;
}
    </style>"""


def generate_html_spanwise(token_strings, tokenwise_preds, spans, tokenizer):

    # spanwise annotated text
    annotated = []
    span_ends = -1
    in_span = False

    out_of_span_tokens = []
    for i in reversed(range(len(tokenwise_preds))):

        if in_span:
            if i >= span_ends:
                continue
            else:
                in_span = False

        predicted_class = ""
        style = ""

        span = None
        for s in spans:
            if s[1] == i+1:
                span = s

        if tokenwise_preds[i] != 0 and span is not None:
            predicted_class = f"highlight spanhighlight"
            style = f"background-color: {map_value_to_color((tokenwise_preds[i]-1)/(len(new_tags)-1))}"
            if tokenizer.convert_tokens_to_string([token_strings[i]]).startswith(" "):
                annotated.append("Ġ")

            span_opener = f"Ġ<span class='{predicted_class}' data-tooltip-text='{new_tags[tokenwise_preds[i]]}' style='{style}'>".replace(" ", "Ġ")
            span_end = f"<span class='small-text'>{new_tags[tokenwise_preds[i]]}</span></span>"
            annotated.extend(out_of_span_tokens)
            out_of_span_tokens = []
            span_ends = span[0]
            in_span = True
            annotated.append(span_end)
            annotated.extend([token_strings[x] for x in reversed(range(span[0], span[1]))])
            annotated.append(span_opener)
        else:
            out_of_span_tokens.append(token_strings[i])

    annotated.extend(out_of_span_tokens)

    return [x for x in reversed(annotated)]

# Define function to generate text based on input
def generate_text(generation_kwargs, output_field):

    
    # Start text generation in a separate thread
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    # Display generated text as it becomes available
    text_tokenwise = ""
    text_spans = ""
    removed_spans = ""
    tags = []
    spans = []
    for new_text in streamer:
        if new_text[1] is not None and new_text[2] != ['']:
            text_tokenwise = ""
            tags.extend(new_text[1])
            spans.extend(new_text[-1])

            # Tokenwise Classification
            for tk, pred in zip(new_text[2],tags):
                if pred != 0:
                    style = f"background-color: {map_value_to_color((pred-1)/(len(new_tags)-1))}"
                    if tk.startswith(" "):
                        text_tokenwise += " "
                    text_tokenwise += f"<span class='tooltip highlight' data-tooltip-text='{new_tags[pred]}' style='{style}'>{tk}</span>"
                else:
                    text_tokenwise += tk

            # Span Classification
            text_spans = ""
            if len(spans) > 0:
                filtered_spans = remove_overlapping_spans(spans)
                text_spans = generate_html_no_overlap(new_text[2], filtered_spans)
                if len(spans) - len(filtered_spans) > 0:
                    removed_spans = f"{len(spans) - len(filtered_spans)} span(s) hidden due to overlap."
            else:
                for tk in new_text[2]:
                    text_spans += f"{tk}"

            # Spanwise Classification
            annotated_tokens = generate_html_spanwise(new_text[2], tags, [x for x in filter_spans(spans)[0]], tok)
            generated_text_spanwise = tok.convert_tokens_to_string(annotated_tokens).replace("<|endoftext|>", "")

            output_field.empty()
            output = f"{css}"
            output += generated_text_spanwise.replace("\n", " ").replace("$", "$") + "\n<br>"
            output += "<details><summary>Show tokenwise classification</summary>\n" + text_tokenwise.replace("\n", " ").replace("$", "\\$")
            #output += "</details><details><summary>Show spans</summary>\n" + text_spans.replace("\n", " ").replace("$", "\\$")
            if removed_spans != "":
                output += f"<br><br><i>({removed_spans})</i>"
            output += "</details>"
            output_field.write(output, unsafe_allow_html=True)

# Input field
input_text = st.text_area("Enter prompt for completion", "")

# Sidebar for customizing generation parameters
with st.sidebar:
    st.subheader("Generation Parameters")
    max_new_tokens = st.slider("Max New Tokens", min_value=1, max_value=100, value=30)
    repetition_penalty = st.slider("Repetition Penalty", min_value=1.0, max_value=2.0, value=1.2)
    do_sample = st.checkbox("Do Sample", value=True)
    temperature = st.slider("Temperature", min_value=0.1, max_value=2.0, value=1.0)
    top_p = st.slider("Top-p", min_value=0.1, max_value=1.0, value=0.3)
    top_k = st.slider("Top-k", min_value=10, max_value=100, value=50)
    typical_p = st.slider("Typical P", min_value=0.1, max_value=1.0, value=1.0)

# Button to generate text
if st.button("Generate"):
    if input_text:
        output_field = st.empty()
        inputs = tok(["  " + input_text], return_tensors="pt").to(model.device)
        generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens, 
                                 repetition_penalty=repetition_penalty, temperature=temperature, 
                                 top_p=top_p, top_k=top_k, do_sample=do_sample, typical_p=typical_p)
        generate_text(generation_kwargs, output_field)
    else:
        st.warning("Please enter some text first.")