File size: 8,492 Bytes
41e2b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4419b4
41e2b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import keras
import numpy as np
import pandas as pd
import gradio as gr
import os

from keras.applications.densenet import DenseNet121
from keras.layers import Dense, GlobalAveragePooling2D
from keras.models import Model

med_labels = ['Cardiomegaly', 
          'Emphysema', 
          'Effusion', 
          'Hernia', 
          'Infiltration', 
          'Mass', 
          'Nodule', 
          'Atelectasis',
          'Pneumothorax',
          'Pleural_Thickening', 
          'Pneumonia', 
          'Fibrosis', 
          'Edema', 
          'Consolidation']

def get_weighted_loss(pos_weights, neg_weights, epsilon=1e-7):
    """
    Return weighted loss function given negative weights and positive weights.

    Args:
      pos_weights (np.array): array of positive weights for each class, size (num_classes)
      neg_weights (np.array): array of negative weights for each class, size (num_classes)
    
    Returns:
      weighted_loss (function): weighted loss function
    """
    def weighted_loss(y_true, y_pred):
        """
        Return weighted loss value. 

        Args:
            y_true (Tensor): Tensor of true labels, size is (num_examples, num_classes)
            y_pred (Tensor): Tensor of predicted labels, size is (num_examples, num_classes)
        Returns:
            loss (float): overall scalar loss summed across all classes
        """
        # initialize loss to zero
        loss = 0.0
        
        for i in range(len(pos_weights)):
            positive_term_loss = pos_weights[i] * tf.cast(y_true[:,i], tf.float32) * K.log(y_pred[:,i] + epsilon)
            negative_term_loss = neg_weights[i] * tf.cast((1-y_true[:,i]), tf.float32) * K.log(1-y_pred[:,i] + epsilon)
            loss +=  -K.mean(positive_term_loss + negative_term_loss)
        
        return loss

    return weighted_loss

freq_neg = np.loadtxt('freq_neg.txt')
freq_pos = np.loadtxt('freq_pos.txt')

pos_weights = freq_neg
neg_weights = freq_pos


# create the base pre-trained model
base_model = DenseNet121(weights='./nih/densenet.hdf5', include_top=False)

x = base_model.output

# add a global spatial average pooling layer
x = GlobalAveragePooling2D()(x)

# and a logistic layer
predictions = Dense(len(med_labels), activation="sigmoid")(x)

model = Model(inputs=base_model.input, outputs=predictions)
model.compile(optimizer='adam', loss=get_weighted_loss(pos_weights, neg_weights))


model.load_weights("./nih/pretrained_model.h5")


import os
import tensorflow as tf
from tensorflow import keras
from IPython.display import Image, display
import matplotlib.cm as cm


def convert_preds(preds):
    q = dict(zip(med_labels, preds[0]))
    return q



# The Grad-CAM algorithm

def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
    # First, we create a model that maps the input image to the activations
    # of the last conv layer as well as the output predictions
    grad_model = keras.models.Model(
        model.inputs, [model.get_layer(last_conv_layer_name).output, model.output]
    )

    # Then, we compute the gradient of the top predicted class for our input image
    # with respect to the activations of the last conv layer
    with tf.GradientTape() as tape:
        last_conv_layer_output, preds = grad_model(img_array)
        if pred_index is None:
            pred_index = tf.argmax(preds[0])
        class_channel = preds[:, pred_index]

    # This is the gradient of the output neuron (top predicted or chosen)
    # with regard to the output feature map of the last conv layer
    grads = tape.gradient(class_channel, last_conv_layer_output)

    # This is a vector where each entry is the mean intensity of the gradient
    # over a specific feature map channel
    pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))

    # We multiply each channel in the feature map array
    # by "how important this channel is" with regard to the top predicted class
    # then sum all the channels to obtain the heatmap class activation
    last_conv_layer_output = last_conv_layer_output[0]
    heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
    heatmap = tf.squeeze(heatmap)

    # For visualization purpose, we will also normalize the heatmap between 0 & 1
    heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
    return heatmap.numpy()


# Create a superimposed visualization
    
def superimpose_gradcam(img_path, heatmap, alpha=0.5):
    # Load the original image
    img = keras.utils.load_img(img_path)
    img = keras.utils.img_to_array(img)

    # Rescale heatmap to a range 0-255
    heatmap = np.uint8(255 * heatmap)

    # Use jet colormap to colorize heatmap
    jet = cm.get_cmap("jet")

    # Use RGB values of the colormap
    jet_colors = jet(np.arange(256))[:, :3]
    jet_heatmap = jet_colors[heatmap]

    # Create an image with RGB colorized heatmap
    jet_heatmap = keras.utils.array_to_img(jet_heatmap)
    jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
    jet_heatmap = keras.utils.img_to_array(jet_heatmap)

    # Superimpose the heatmap on original image
    superimposed_img = jet_heatmap * alpha + img * 0.4
    superimposed_img = keras.utils.array_to_img(superimposed_img)

    return superimposed_img

    # Save the superimposed image
    # superimposed_img.save(cam_path)

    # # Display Grad CAM
    # display(Image(cam_path,width=300))


def pil_to_np(pil):
    a = np.array(pil)
    return a

def np_to_pil(a):
    from PIL import Image
    im = Image.fromarray(a) #, mode="RGB"
    return im


from keras.preprocessing import image

def load_image_to_array(image_path, H=320, W=320):
    pil = image.load_img(
        image_path, 
        target_size=(H, W),
        color_mode = 'rgb',
        interpolation = 'nearest',
    )
    a = pil_to_np(pil)
    return a

def normalize_array(a):
    pil = np_to_pil(a)
    mean = np.mean(pil)
    std = np.std(pil)
    pil -= mean
    pil /= std
    a2 = pil_to_np(pil)
    a2 = np.expand_dims(a2, axis=0)
    return a2


selected_keys = ['Cardiomegaly','Mass','Pneumothorax','Edema']
# selected_keys.append('Infiltration')
def print_selected(preds):
    for k in selected_keys:
        print('{:15}\t{:6.3f}'.format(k, preds[k]))



IMAGE_DIR = "nih/images-small/"
last_conv_layer_name = 'bn'


def med_classify_image(inp):
    inp = load_image_to_array(inp)
    inp = normalize_array(inp)
    preds = model.predict(inp,verbose=0)
    preds = convert_preds(preds)
    preds = {key:value.item() for key, value in preds.items()}
    return preds

def gradcam(inp):
    selected_labels = [
        (idx, label) 
        for idx, label in enumerate(med_labels) 
        if label in selected_keys]
    img_array = load_image_to_array(inp)
    img_array = normalize_array(img_array)
    images = []
    for k, l in selected_labels:
        heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index = k)
        superimposed_img = superimpose_gradcam(inp, heatmap)
        images.append((superimposed_img,l))
    return images


with gr.Blocks(css="footer {visibility: hidden}") as demo:
    gr.Markdown('# Chest X-Ray Medical Diagnosis with Deep Learning')
    with gr.Row():
        input_image = gr.Image(label='Chest X-Ray',type='filepath',image_mode='L')
        with gr.Column():
            gr.Examples(
                examples=[
                    "nih/images-small/00008270_015.png",
                    "nih/images-small/00011355_002.png",
                    "nih/images-small/00029855_001.png",
                    "nih/images-small/00005410_000.png",
                ],
                inputs=input_image,
                label='Examples'
                # fn=mirror,
                # cache_examples=True,
            )
            with gr.Column():
                b1 = gr.Button("Classify")
                b2 = gr.Button("Compute GradCam")
    with gr.Row():
        label = gr.Label(label='Classification',num_top_classes=5)
        gallery = gr.Gallery(
            label="GradCam", 
            show_label=True, 
            elem_id="gallery",
            object_fit="scale-down", 
            height=400)
    gr.Markdown(
    """
    [ChestX-ray8 dataset](https://arxiv.org/abs/1705.02315)
    [Download the entire dataset](https://nihcc.app.box.com/v/ChestXray-NIHCC)
    """)
    b1.click(med_classify_image, inputs=input_image, outputs=label)
    b2.click(gradcam, inputs=input_image, outputs=gallery)

if __name__ == "__main__":
    demo.launch()