File size: 10,929 Bytes
c4c7cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import traceback
import os
import sys
import PIL
import json
import torch
import numpy as np
import pandas as pd
import operator
import joblib
import reverse_geocoder

from PIL import Image
from itertools import cycle
from tqdm.auto import tqdm, trange
from os.path import join
from PIL import Image

from tqdm import tqdm
from collections import Counter
from transformers import CLIPProcessor, CLIPModel
from torch.utils.data import Dataset, DataLoader
from torch.nn import functional as F
from utils import haversine


class GeoDataset(Dataset):
    def __init__(self, image_folder, annotation_file, tag="image_id"):
        self.image_folder = image_folder
        gt = pd.read_csv(annotation_file, dtype={tag: str})
        files = set([f.replace(".jpg", "") for f in os.listdir(image_folder)])
        gt = gt[gt[tag].isin(files)]
        self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
        self.gt = [
            (g[1][tag], g[1]["latitude"], g[1]["longitude"]) for g in gt.iterrows()
        ]
        self.tag = tag

    def fid(self, i):
        return self.gt[i][0]

    def latlon(self, i):
        return self.gt[i][1]

    def __len__(self):
        return len(self.gt)

    def __getitem__(self, idx):
        fp = join(self.image_folder, self.gt[idx][0] + ".jpg")
        pil = PIL.Image.open(fp)
        proc = self.processor(images=pil, return_tensors="pt")
        proc["image_id"] = self.gt[idx][0]
        return proc


@torch.no_grad()
def compute_features_clip(img, model):
    image_ids = img.data.pop("image_id")
    image_input = img.to(model.device)
    image_input["pixel_values"] = image_input["pixel_values"].squeeze(1)
    features = model.get_image_features(**image_input)
    features /= features.norm(dim=-1, keepdim=True)
    return image_ids, features.cpu()


def get_prompts(country, region, sub_region, city):
    a = country if country != "" else None
    b, c, d = None, None, None
    if a is not None:
        b = country + ", " + region if region != "" else None
        if b is not None:
            c = (
                country + ", " + region + ", " + sub_region
                if sub_region != ""
                else None
            )
            d = (
                country + ", " + region + ", " + sub_region + ", " + city
                if city != ""
                else None
            )
    return a, b, c, d


if __name__ == "__main__":
    # make a train/eval argparser
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--annotation_file", type=str, required=False, default="train.csv"
    )
    parser.add_argument(
        "--features_parent", type=str, default="/home/isig/gaia-v2/faiss/street-clip"
    )
    parser.add_argument(
        "--data_parent", type=str, default="/home/isig/gaia-v2/loic-data/"
    )

    args = parser.parse_args()
    test_path_csv = join(args.data_parent, "test.csv")
    test_image_dir = join(args.data_parent, "test")
    save_path = join(args.features_parent, "indexes/test.index")
    test_features_dir = join(args.features_parent, "indexes/features-test")

    processor = CLIPProcessor.from_pretrained("geolocal/StreetCLIP")
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = CLIPModel.from_pretrained("geolocal/StreetCLIP").to(device)

    @torch.no_grad()
    def compute_text_features_clip(text):
        text_pt = processor(text=text, return_tensors="pt").to(device)
        features = model.get_text_features(**text_pt)
        features /= features.norm(dim=-1, keepdim=True)
        return features.cpu().squeeze(0).numpy()

    import country_converter as coco

    if not os.path.isfile("text_street-clip-features.pkl"):
        if not os.path.isfile("rg_cities1000.csv"):
            os.system(
                "wget https://raw.githubusercontent.com/thampiman/reverse-geocoder/master/reverse_geocoder/rg_cities1000.csv"
            )

        cities = pd.read_csv("rg_cities1000.csv")
        cities = cities[["lat", "lon", "name", "admin1", "admin2", "cc"]]
        reprs = {0: {}, 1: {}, 2: {}, 3: {}}
        for line in tqdm(
            cities.iterrows(), total=len(cities), desc="Creating hierarchy"
        ):
            lat, lon, city, region, sub_region, cc = line[1]
            try:
                city, region, sub_region, cc = [
                    ("" if pd.isna(x) else x)
                    for x in [
                        city,
                        region,
                        sub_region,
                        coco.convert(cc, to="name_short"),
                    ]
                ]
                a, b, c, d = get_prompts(cc, region, sub_region, city)
                if a is not None:
                    if a not in reprs[0]:
                        reprs[0][a] = {
                            "gps": {(lat, lon)},
                            "embedding": compute_text_features_clip(a),
                        }
                    else:
                        reprs[0][a]["gps"].add((lat, lon))

                if b is not None:
                    if b not in reprs[1]:
                        reprs[1][b] = {
                            "gps": {(lat, lon)},
                            "embedding": compute_text_features_clip(b),
                        }
                    else:
                        reprs[1][b]["gps"].add((lat, lon))

                if c is not None:
                    if c not in reprs[2]:
                        reprs[2][c] = {
                            "gps": {(lat, lon)},
                            "embedding": compute_text_features_clip(c),
                        }
                    else:
                        reprs[2][c]["gps"].add((lat, lon))

                if d is not None:
                    if d not in reprs[3]:
                        reprs[3][d] = {
                            "gps": {(lat, lon)},
                            "embedding": compute_text_features_clip(
                                d.replace(", , ", ", ")
                            ),
                        }
                    else:
                        reprs[3][d]["gps"].add((lat, lon))
            except Exception as e:
                # print stack trace into file log.txt
                with open("log.txt", "a") as f:
                    print(traceback.format_exc(), file=f)

        reprs[-1] = {"": {"gps": (0, 0), "embedding": compute_text_features_clip("")}}

        # compute mean for gps of all 'a' and 'b' and 'c' and 'd'
        for i in range(4):
            for k in reprs[i].keys():
                reprs[i][k]["gps"] = tuple(
                    np.array(list(reprs[i][k]["gps"])).mean(axis=0).tolist()
                )

        joblib.dump(reprs, "text_street-clip-features.pkl")
    else:
        reprs = joblib.load("text_street-clip-features.pkl")

    def get_loc(x):
        location = reverse_geocoder.search(x[0].tolist())[0]
        country = coco.convert(names=location["cc"], to="name_short")
        region = location.get("admin1", "")
        sub_region = location.get("admin2", "")
        city = location.get("name", "")
        a, b, c, d = get_prompts(country, region, sub_region, city)
        return a, b, c, d

    def matches(embed, repr, control, gt, sw=None):
        first_max = max(
            (
                (k, embed.dot(v["embedding"]))
                for k, v in repr.items()
                if sw is None or k.startswith(sw)
            ),
            key=operator.itemgetter(1),
        )
        if first_max[1] > embed.dot(control["embedding"]):
            return repr[first_max[0]]["gps"], gt == first_max[0]
        else:
            return control["gps"], False

    def get_match_values(gt, embed, N, pos):
        xa, xb, xc, xd = get_loc(gt)

        if xa is not None:
            N["country"] += 1
            gps, flag = matches(embed, reprs[0], reprs[-1][""], xa)
            if flag:
                pos["country"] += 1
                if xb is not None:
                    N["region"] += 1
                    gps, flag = matches(embed, reprs[1], reprs[0][xa], xb, sw=xa)
                    if flag:
                        pos["region"] += 1
                        if xc is not None:
                            N["sub-region"] += 1
                            gps, flag = matches(
                                embed, reprs[2], reprs[1][xb], xc, sw=xb
                            )
                            if flag:
                                pos["sub-region"] += 1
                                if xd is not None:
                                    N["city"] += 1
                                    gps, flag = matches(
                                        embed, reprs[3], reprs[2][xc], xd, sw=xc
                                    )
                                    if flag:
                                        pos["city"] += 1
                        else:
                            if xd is not None:
                                N["city"] += 1
                                gps, flag = matches(
                                    embed, reprs[3], reprs[1][xb], xd, sw=xb + ", "
                                )
                                if flag:
                                    pos["city"] += 1

        haversine(np.array(gps)[None, :], np.array(gt), N, pos)

    def compute_print_accuracy(N, pos):
        for k in N.keys():
            pos[k] /= N[k]

        # pretty-print accuracy in percentage with 2 floating points
        print(
            f'Accuracy: {pos["country"]*100.0:.2f} (country), {pos["region"]*100.0:.2f} (region), {pos["sub-region"]*100.0:.2f} (sub-region), {pos["city"]*100.0:.2f} (city)'
        )
        print(
            f'Haversine: {pos["haversine"]:.2f} (haversine), {pos["geoguessr"]:.2f} (geoguessr)'
        )

    import joblib

    data = GeoDataset(test_image_dir, test_path_csv, tag="id")
    test_gt = pd.read_csv(test_path_csv, dtype={"id": str})[
        ["id", "latitude", "longitude"]
    ]
    test_gt = {
        g[1]["id"]: np.array([g[1]["latitude"], g[1]["longitude"]])
        for g in tqdm(test_gt.iterrows(), total=len(test_gt), desc="Loading test_gt")
    }

    with open("/home/isig/gaia-v2/loic/plonk/test3_indices.txt", "r") as f:
        # read lines
        lines = f.readlines()
        # remove whitespace characters like `\n` at the end of each line
        lines = [l.strip() for l in lines]
        # and convert to set
        lines = set(lines)

    train_test = []
    N, pos = Counter(), Counter()
    for f in tqdm(os.listdir(test_features_dir)):
        if f.replace(".npy", "") not in lines:
            continue
        query_vector = np.squeeze(np.load(join(test_features_dir, f)))
        test_gps = test_gt[f.replace(".npy", "")][None, :]
        get_match_values(test_gps, query_vector, N, pos)

    compute_print_accuracy(N, pos)