Spaces:
Sleeping
Sleeping
import os | |
import re | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
# from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI | |
# from llama_index.core.agent.workflow import AgentWorkflow | |
# from llama_index.core.tools import FunctionTool | |
from agent_llama import all_tools | |
from agent_graph import build_graph | |
from langchain_core.messages import HumanMessage | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Definition --- | |
# A custom agent class that wraps an LLM and agent workflow from llama index | |
# class BasicAgent: | |
# def __init__(self): | |
# print("BasicAgent initialized.") | |
# self.llm = HuggingFaceInferenceAPI(model_name="HuggingFaceH4/zephyr-7b-beta") | |
# self.agent = AgentWorkflow.from_tools_or_functions( | |
# all_tools, # make sure all_tools are sync functions | |
# llm=self.llm, | |
# system_prompt="You are a general AI assistant. Think step-by-step, and return only the final answer on the last line." | |
# ) | |
# def __call__(self, question: str) -> str: | |
# try: | |
# response = self.agent.run(question) # sync version of arun() | |
# return str(response) | |
# except Exception as e: | |
# return f"Agent error: {e}" | |
# Using LangGraph | |
class BasicAgent: | |
"""A langgraph agent.""" | |
def __init__(self): | |
print("BasicAgent initialized.") | |
self.graph = build_graph() | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
user_message = [HumanMessage(content=question)] | |
result = self.graph.invoke({"messages": user_message}) | |
answer = result['messages'][-1].content | |
# Use regex to extract only the final answer | |
match = re.search(r"FINAL ANSWER:\s*(.*)", answer) | |
return match.group(1).strip() if match else answer | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Runs agent across GAIA questions, submits the answers and returns the results | |
""" | |
# Retrive HF space ID from enviornment variables | |
space_id = os.getenv("SPACE_ID") | |
# Check if user is logged in | |
if profile: # Populated after log in gr.LoginButton | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
# Initialize GAIA question and submission urls | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# Initialize agent | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# Initialize agent repository to be used for agent code | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# Fetching questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
# JSON containing GAIA questions | |
questions_data = response.json() | |
# Guard clause - Check for empty list or errors | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except Exception as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
# Initialize empty logs for results and answers to be submitted | |
answers_payload = [] # Task ID + Submitted Answer - Used for evaluation | |
results_log = [] # Task ID + Question + Submitted Answer - Used for display | |
# Run agent on questions | |
print(f"Running agent on {len(questions_data)} questions...") | |
# For loop to pull individual questions as agent input | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
# Submit question to agent | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# Initialize submission data | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
# POST submission data | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except Exception as e: | |
status_message = f"Submission Failed: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# Initialize Gradio app | |
with gr.Blocks() as demo: | |
# Markdown text blocks | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Log in to your Hugging Face account using the button below. | |
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and see the score. | |
""" | |
) | |
# Adds a login button for authentication | |
gr.LoginButton() | |
# A button that triggers evaluation logic when clicked | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) # Non interactive textbox to show result status | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) #Gives | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("🔧 Running startup checks...\n") | |
# Check WikipediaLoader | |
try: | |
from langchain_community.document_loaders import WikipediaLoader | |
print("✅ WikipediaLoader imported successfully.") | |
# Try fetching a test page | |
test_docs = WikipediaLoader(query="Alan Turing", load_max_docs=1).load() | |
if test_docs and test_docs[0].page_content.strip(): | |
print("✅ WikipediaLoader can fetch content.\n") | |
else: | |
print("⚠️ WikipediaLoader returned no content.\n") | |
except Exception as e: | |
print("❌ WikipediaLoader failed:", e, "\n") | |
# Check Google Gemini LLM | |
try: | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
import os | |
if os.getenv("GOOGLE_API_KEY"): | |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) | |
print("✅ Google Gemini model instantiated successfully.\n") | |
else: | |
print("⚠️ GOOGLE_API_KEY not found in environment.\n") | |
except Exception as e: | |
print("❌ langchain-google-genai or Gemini setup failed:", e, "\n") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |