Nick Sebald
such a struggle bus
d5eb6ce
import os
import re
import gradio as gr
import requests
import inspect
import pandas as pd
# from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
# from llama_index.core.agent.workflow import AgentWorkflow
# from llama_index.core.tools import FunctionTool
from agent_llama import all_tools
from agent_graph import build_graph
from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# A custom agent class that wraps an LLM and agent workflow from llama index
# class BasicAgent:
# def __init__(self):
# print("BasicAgent initialized.")
# self.llm = HuggingFaceInferenceAPI(model_name="HuggingFaceH4/zephyr-7b-beta")
# self.agent = AgentWorkflow.from_tools_or_functions(
# all_tools, # make sure all_tools are sync functions
# llm=self.llm,
# system_prompt="You are a general AI assistant. Think step-by-step, and return only the final answer on the last line."
# )
# def __call__(self, question: str) -> str:
# try:
# response = self.agent.run(question) # sync version of arun()
# return str(response)
# except Exception as e:
# return f"Agent error: {e}"
# Using LangGraph
class BasicAgent:
"""A langgraph agent."""
def __init__(self):
print("BasicAgent initialized.")
self.graph = build_graph()
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
user_message = [HumanMessage(content=question)]
result = self.graph.invoke({"messages": user_message})
answer = result['messages'][-1].content
# Use regex to extract only the final answer
match = re.search(r"FINAL ANSWER:\s*(.*)", answer)
return match.group(1).strip() if match else answer
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Runs agent across GAIA questions, submits the answers and returns the results
"""
# Retrive HF space ID from enviornment variables
space_id = os.getenv("SPACE_ID")
# Check if user is logged in
if profile: # Populated after log in gr.LoginButton
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
# Initialize GAIA question and submission urls
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Initialize agent
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# Initialize agent repository to be used for agent code
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# Fetching questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
# JSON containing GAIA questions
questions_data = response.json()
# Guard clause - Check for empty list or errors
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
# Initialize empty logs for results and answers to be submitted
answers_payload = [] # Task ID + Submitted Answer - Used for evaluation
results_log = [] # Task ID + Question + Submitted Answer - Used for display
# Run agent on questions
print(f"Running agent on {len(questions_data)} questions...")
# For loop to pull individual questions as agent input
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
# Submit question to agent
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Initialize submission data
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
# POST submission data
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# Initialize Gradio app
with gr.Blocks() as demo:
# Markdown text blocks
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and see the score.
"""
)
# Adds a login button for authentication
gr.LoginButton()
# A button that triggers evaluation logic when clicked
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) # Non interactive textbox to show result status
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) #Gives
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("🔧 Running startup checks...\n")
# Check WikipediaLoader
try:
from langchain_community.document_loaders import WikipediaLoader
print("✅ WikipediaLoader imported successfully.")
# Try fetching a test page
test_docs = WikipediaLoader(query="Alan Turing", load_max_docs=1).load()
if test_docs and test_docs[0].page_content.strip():
print("✅ WikipediaLoader can fetch content.\n")
else:
print("⚠️ WikipediaLoader returned no content.\n")
except Exception as e:
print("❌ WikipediaLoader failed:", e, "\n")
# Check Google Gemini LLM
try:
from langchain_google_genai import ChatGoogleGenerativeAI
import os
if os.getenv("GOOGLE_API_KEY"):
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
print("✅ Google Gemini model instantiated successfully.\n")
else:
print("⚠️ GOOGLE_API_KEY not found in environment.\n")
except Exception as e:
print("❌ langchain-google-genai or Gemini setup failed:", e, "\n")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)