Spaces:
Running
Running
File size: 4,586 Bytes
1c1a0c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
"""
UNet model definition for lane segmentation.
Includes DoubleConv block and UNet architecture.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
# --- DoubleConv Block ---
class DoubleConv(nn.Module):
"""
(Conv => BN => ReLU) * 2 block used in UNet encoder/decoder.
Args:
in_channels: Number of input channels
out_channels: Number of output channels
"""
def __init__(self, in_channels: int, out_channels: int):
"""
Args:
in_channels (int): Number of input channels
out_channels (int): Number of output channels
"""
super().__init__()
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for DoubleConv block.
Args:
x (torch.Tensor): Input tensor
Returns:
torch.Tensor: Output tensor
"""
return self.double_conv(x)
# --- UNet Model ---
class UNet(nn.Module):
"""
U-Net: Convolutional Networks for Biomedical Image Segmentation
Args:
in_channels: Number of input channels
out_channels: Number of output channels
"""
def __init__(self, in_channels: int = 3, out_channels: int = 1):
"""
Args:
in_channels (int): Number of input channels
out_channels (int): Number of output channels
"""
super().__init__()
self.encoder1 = DoubleConv(in_channels, 64)
self.pool1 = nn.MaxPool2d(kernel_size=2)
self.encoder2 = DoubleConv(64, 128)
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.encoder3 = DoubleConv(128, 256)
self.pool3 = nn.MaxPool2d(kernel_size=2)
self.encoder4 = DoubleConv(256, 512)
self.pool4 = nn.MaxPool2d(kernel_size=2)
self.bottleneck = DoubleConv(512, 1024)
self.upconv4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
self.decoder4 = DoubleConv(1024, 512)
self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.decoder3 = DoubleConv(512, 256)
self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.decoder2 = DoubleConv(256, 128)
self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.decoder1 = DoubleConv(128, 64)
self.final_conv = nn.Conv2d(64, out_channels, kernel_size=1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for UNet model.
Args:
x (torch.Tensor): Input tensor
Returns:
torch.Tensor: Output tensor
"""
"""
Forward pass of UNet.
Args:
x: Input tensor of shape (B, C, H, W)
Returns:
Output tensor of shape (B, out_channels, H, W)
"""
enc1 = self.encoder1(x)
enc2 = self.encoder2(self.pool1(enc1))
enc3 = self.encoder3(self.pool2(enc2))
enc4 = self.encoder4(self.pool3(enc3))
bottleneck = self.bottleneck(self.pool4(enc4))
dec4 = self.upconv4(bottleneck)
dec4 = torch.cat([dec4, enc4], dim=1)
dec4 = self.decoder4(dec4)
dec3 = self.upconv3(dec4)
dec3 = torch.cat([dec3, enc3], dim=1)
dec3 = self.decoder3(dec3)
dec2 = self.upconv2(dec3)
dec2 = torch.cat([dec2, enc2], dim=1)
dec2 = self.decoder2(dec2)
dec1 = self.upconv1(dec2)
dec1 = torch.cat([dec1, enc1], dim=1)
dec1 = self.decoder1(dec1)
out = self.final_conv(dec1)
return torch.sigmoid(out)
# --- Model Summary and FLOPs (Optional) ---
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = UNet(in_channels=3, out_channels=1).to(device)
dummy_input = torch.randn(1, 3, 256, 256).to(device)
output = model(dummy_input)
print(f"Output shape: {output.shape}")
# Model summary
from torchinfo import summary
print(summary(model, input_size=(1, 3, 256, 256), device=device))
# FLOPs and parameters
from thop import profile
flops, params = profile(model, inputs=(dummy_input,))
print(f"FLOPs: {flops:,}")
print(f"Parameters: {params:,}") |