Spaces:
Runtime error
Runtime error
File size: 2,677 Bytes
fc75f91 238ab50 1fb2550 238ab50 fc75f91 1fb2550 238ab50 8d7ed76 238ab50 25b8856 238ab50 952f87e 77a996f 238ab50 25e0f62 238ab50 22a141b 238ab50 25e0f62 25b8856 238ab50 25e0f62 fc75f91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import gradio as gr
import torch
from torchtext.data.utils import get_tokenizer
import numpy as np
import subprocess
from huggingface_hub import hf_hub_download
from transformer import Transformer
model_url = "https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl"
subprocess.run(["pip", "install", model_url])
MAX_LEN = 350
tokenizer = get_tokenizer('spacy', language='en_core_web_sm')
vocab = torch.load(hf_hub_download(repo_id="nickgardner/chatbot",
filename="vocab.pth"))
vocab_token_dict = vocab.get_stoi()
indices_to_tokens = vocab.get_itos()
pad_token = vocab_token_dict['<pad>']
unknown_token = vocab_token_dict['<unk>']
sos_token = vocab_token_dict['<sos>']
eos_token = vocab_token_dict['<eos>']
text_pipeline = lambda x: vocab(tokenizer(x))
d_model = 512
heads = 8
N = 6
src_vocab = len(vocab)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Transformer(len(vocab), len(vocab), d_model, N, heads).to(device)
model.load_state_dict(torch.load(hf_hub_download(repo_id="nickgardner/chatbot",
filename="alpaca_train_400_epoch.pt"), map_location=device))
model.eval()
def respond(search_type, input):
model.eval()
src = torch.tensor(text_pipeline(input), dtype=torch.int64).unsqueeze(0).to(device)
src_mask = ((src != pad_token) & (src != unknown_token)).unsqueeze(-2).to(device)
e_outputs = model.encoder(src, src_mask)
outputs = torch.zeros(MAX_LEN).type_as(src.data).to(device)
outputs[0] = torch.tensor([vocab.get_stoi()['<sos>']])
for i in range(1, MAX_LEN):
trg_mask = np.triu(np.ones([1, i, i]), k=1).astype('uint8')
trg_mask = torch.autograd.Variable(torch.from_numpy(trg_mask) == 0).to(device)
out = model.out(model.decoder(outputs[:i].unsqueeze(0), e_outputs, src_mask, trg_mask))
if search_type == "Greedy":
out = torch.nn.functional.softmax(out, dim=-1)
val, ix = out[:, -1].data.topk(1)
outputs[i] = ix[0][0]
if ix[0][0] == vocab_token_dict['<eos>']:
break
else:
out = torch.nn.functional.softmax(out, dim=-1)[:, -1].squeeze().detach().numpy()
ix = np.random.choice(np.arange(len(out)), 1, p=out)
outputs[i] = ix[0]
if ix[0] == vocab_token_dict['<eos>']:
break
return ' '.join([indices_to_tokens[ix] for ix in outputs[1:i]])
iface = gr.Interface(fn=respond,
inputs=[gr.Radio(["Greedy", "Probabilistic"], label="Search Type"), "text"],
outputs="text")
iface.launch() |