File size: 13,210 Bytes
3bd3dc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
559db5d
3bd3dc8
 
 
 
 
 
 
 
 
 
 
 
ac817f9
 
 
 
 
 
 
 
 
 
 
 
1f4cc7c
 
ac817f9
bb30421
ac817f9
 
 
 
 
 
1f4cc7c
 
ac817f9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import requests
import json
import os
from collections import Counter
from langgraph.graph import StateGraph, END
from typing import TypedDict, Annotated
import operator
from langchain_core.messages import AnyMessage, SystemMessage, HumanMessage, ToolMessage, AIMessage
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.chat_models import init_chat_model
import gradio as gr
from langchain.schema import HumanMessage
from langchain.tools import tool
import ebooklib
from ebooklib import epub, ITEM_DOCUMENT
from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
import numpy as np
import tempfile
from typing import List, Dict
import seaborn as sns
import re
from sklearn.feature_extraction.text import TfidfVectorizer
import nltk
from nltk.corpus import stopwords

MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")

def extract_clean_chapters(epub_path):
    skip_titles = ['about the author', 'acknowledgment', 'acknowledgements',
                   'copyright', 'table of contents', 'dedication', 'preface', 'foreword']
    book = epub.read_epub(epub_path)
    chapters = {}

    chapter_index = 1
    for item in book.get_items():
        if item.get_type() == ebooklib.ITEM_DOCUMENT:
            soup = BeautifulSoup(item.get_content(), 'html.parser')
            text = soup.get_text().strip()
            title_tag = soup.title.string if soup.title else None
            title = title_tag.strip() if title_tag else f"Chapter {chapter_index}"

            title_lower = title.lower()
            if any(skip in title_lower for skip in skip_titles):
                continue
            if len(text.split()) < 300:
                continue

            chapters[title] = text
            chapter_index += 1

    return chapters

def plot_word_count(chapter_word_counts):
    titles = list(chapter_word_counts.keys())
    word_counts = list(chapter_word_counts.values())

    fig, ax = plt.subplots(figsize=(12, 6))
    ax.bar(range(len(titles)), word_counts, color='skyblue')
    ax.set_xticks(range(len(titles)))
    ax.set_xticklabels([f"{i+1}" for i in range(len(titles))], rotation=90)
    ax.set_xlabel("Chapters")
    ax.set_ylabel("Word Count")
    ax.set_title("Word Count per Chapter")
    plt.tight_layout()

    return fig  # Return the figure directly

@tool
def get_chapter_wordcount_plot(book_path: str) -> str:
    """
    Extracts chapter-wise word counts from an EPUB book and plots a bar chart.

    Args:
        book_path: Path to the .epub file.

    Returns:
        A dictionary with total chapter count, average word count, and plot image path.
    """
    chapters = extract_clean_chapters(book_path)
    chapter_word_counts = {title: len(text.split()) for title, text in chapters.items()}

    avg_words = sum(chapter_word_counts.values()) / len(chapter_word_counts) if chapter_word_counts else 0
    fig = plot_word_count(chapter_word_counts)

    image_path = "/tmp/wordcount_plot.png"
    fig.savefig(image_path)
    plt.close(fig)  # free memory
    return image_path


# Load sentiment model + tokenizer with correct label mapping
model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model.config.id2label = {
    0: "negative",
    1: "neutral",
    2: "positive"
}

sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)

def extract_epub_text(epub_path: str) -> str:
    book = epub.read_epub(epub_path)
    text = []
    for item in book.get_items():
        if item.get_type() == ITEM_DOCUMENT:
            soup = BeautifulSoup(item.get_content(), "html.parser")
            text.append(soup.get_text())
    return ' '.join(' '.join(text).split())

def extract_text(file_path: str) -> str:
    if file_path.endswith(".epub"):
        return extract_epub_text(file_path)
    else:
        with open(file_path, "r", encoding="utf-8") as f:
            return ' '.join(f.read().split())

def chunk_text(text: str, chunk_size: int = 1000) -> List[str]:
    words = text.split()
    return [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]

def analyze_chunks(chunks: List[str]) -> List[float]:
    sentiment_scores = []
    for i, chunk in enumerate(chunks):  # analyze all chunks
        result = sentiment_pipeline(chunk[:512])[0]
        # print(f"Chunk {i}: {result}")  # useful for debugging
        label = result['label'].lower()
        confidence = result['score']
        if label == "positive":
            sentiment_scores.append(confidence)
        elif label == "negative":
            sentiment_scores.append(-confidence)
        else:  # neutral
            sentiment_scores.append(0.0)
    return sentiment_scores

def smooth(scores: List[float], window: int = 3) -> List[float]:
    return np.convolve(scores, np.ones(window)/window, mode='same')

def plot_sentiment_arc(scores: List[float], title="Sentiment Arc"):
    fig, ax = plt.subplots(figsize=(10, 4))
    ax.plot(scores, color='teal', linewidth=2)
    ax.set_title(title)
    ax.set_xlabel("Book Position (Chunks)")
    ax.set_ylabel("Sentiment Score")
    ax.grid(True)
    plt.tight_layout()
    return fig  # return the matplotlib figure

@tool
def get_sentiment_arc(book_path: str) -> str:
    """
    Generates a sentiment arc from a .txt or .epub book file.

    Args:
        book_path: Path to the .txt or .epub book file.

    Returns:
        A dictionary with chunk count, average sentiment score, and plot path.
    """
    text = extract_text(book_path)
    chunks = chunk_text(text)
    raw_scores = analyze_chunks(chunks)
    smoothed_scores = smooth(raw_scores)

    fig = plot_sentiment_arc(smoothed_scores)

    image_path = "/tmp/sentiment_arc.png"
    fig.savefig(image_path)
    plt.close(fig)  # free memory
    return image_path


nltk.download('stopwords')
STOPWORDS = set(stopwords.words('english'))

def extract_epub_chapters(epub_path: str) -> List[str]:
    book = epub.read_epub(epub_path)
    chapters = []
    for item in book.get_items():
        if item.get_type() == ITEM_DOCUMENT:
            soup = BeautifulSoup(item.get_content(), "html.parser")
            text = soup.get_text()
            cleaned = re.sub(r'\s+', ' ', text.strip())
            if len(cleaned.split()) > 50:
                chapters.append(cleaned)
    return chapters

def extract_chapters(file_path: str) -> List[str]:
    if file_path.endswith(".epub"):
        return extract_epub_chapters(file_path)
    else:
        with open(file_path, "r", encoding="utf-8") as f:
            full_text = f.read()
        split_text = re.split(r'\n\s*(Chapter|CHAPTER|chapter)\s+\d+', full_text)
        return [t.strip() for t in split_text if len(t.split()) > 50]

def clean_text(text: str) -> str:
    text = text.lower()
    text = re.sub(r'[^a-z\s]', '', text)
    return ' '.join([w for w in text.split() if w not in STOPWORDS])

def extract_theme_words(chapters: List[str], top_n: int = 10) -> List[str]:
    cleaned = [clean_text(c) for c in chapters]
    vectorizer = TfidfVectorizer(max_features=1000)
    tfidf_matrix = vectorizer.fit_transform(cleaned)
    summed_scores = np.asarray(tfidf_matrix.sum(axis=0)).flatten()
    word_scores = list(zip(vectorizer.get_feature_names_out(), summed_scores))
    top_words = sorted(word_scores, key=lambda x: x[1], reverse=True)[:top_n]
    return [w for w, _ in top_words]

def compute_normalized_frequencies(chapters: List[str], theme_words: List[str]) -> List[Dict[str, float]]:
    freq_matrix = []
    for chap in chapters:
        tokens = clean_text(chap).split()
        total = len(tokens)
        freqs = {w: tokens.count(w) / total for w in theme_words}
        freq_matrix.append(freqs)
    return freq_matrix

def plot_heatmap(freq_matrix: List[Dict[str, float]], theme_words: List[str]) -> str:
    data = np.array([[chapter[word] for word in theme_words] for chapter in freq_matrix])
    fig, ax = plt.subplots(figsize=(15, 12), dpi=100)
    sns.heatmap(data, annot=True, cmap='viridis',
                xticklabels=theme_words,
                yticklabels=[f"C{i+1}" for i in range(len(freq_matrix))],
                ax=ax)

    ax.set_xlabel("Theme Words")
    ax.set_ylabel("Chapters")
    ax.set_title("Word Frequency Heatmap")
    plt.tight_layout()

    return fig  # return the matplotlib figure

@tool
def get_word_frequency_heatmap(book_path: str, top_n_words: int = 10) -> str:
    """
    Generates a word frequency heatmap from a .txt or .epub book.

    Args:
        book_path: Path to the .txt or .epub book file.
        top_n_words: Number of top theme words to extract via TF-IDF.

    Returns:
        A dictionary with chapter count, theme words, and heatmap image path.
    """
    chapters = extract_chapters(book_path)
    theme_words = extract_theme_words(chapters, top_n=top_n_words)
    freq_matrix = compute_normalized_frequencies(chapters, theme_words)
    fig = plot_heatmap(freq_matrix, theme_words)

    image_path = "/tmp/word_freq_heatmap.png"
    fig.savefig(image_path)
    plt.close(fig)  # free memory
    return image_path


class AgentState(TypedDict):
    messages: Annotated[list[AnyMessage], operator.add]


class Agent:

    def __init__(self, model, tools, system=""):
        self.system = system
        graph = StateGraph(AgentState)
        graph.add_node("llm", self.call_mistral_ai)
        graph.add_node("action", self.take_action)
        graph.add_node("final", self.final_answer)
        graph.add_conditional_edges(
            "llm",
            self.exists_action,
            {True: "action", False: END}
        )
        graph.add_edge("action", "final")  # πŸ†•
        graph.add_edge("final", END)        # πŸ†•
        graph.set_entry_point("llm")
        self.graph = graph.compile()
        self.tools = {t.name: t for t in tools}
        self.model = model.bind_tools(tools)

    def exists_action(self, state: AgentState):
        result = state['messages'][-1]
        return len(result.tool_calls) > 0

    def call_mistral_ai(self, state: AgentState):
        messages = state['messages']
        if self.system:
            messages = [SystemMessage(content=self.system)] + messages
        message = self.model.invoke(messages)
        return {'messages': [message]}

    def take_action(self, state: AgentState):
        tool_calls = state['messages'][-1].tool_calls
        results = []
        for t in tool_calls:
            print(f"Calling: {t}")
            if not t['name'] in self.tools:      # check for bad tool name from LLM
                print("\n ....bad tool name....")
                result = "bad tool name, retry"  # instruct LLM to retry if bad
            else:
                result = self.tools[t['name']].invoke(t['args'])
            results.append(ToolMessage(tool_call_id=t['id'], name=t['name'], content=str(result)))
        return {'messages': results}

    def final_answer(self, state: AgentState):
        """Return the final tool output cleanly."""
        return {"messages": [AIMessage(content=state['messages'][-1].content.strip())]}
    


prompt = """You are a reading Assistant. Your task is to help users analyze the novel, books, text.

Use the available tools to get overall summary of the book, novel. You can make multiple lookups if necessary, either together or in sequence.

Your goal is to ensure help the user.

"""

model = init_chat_model("mistral-large-latest", model_provider="mistralai")
abot = Agent(model, [get_chapter_wordcount_plot, get_word_frequency_heatmap, get_sentiment_arc], system=prompt)


def query_agent(epub_file, prompt):
    file_path = epub_file
    user_input = f"{file_path} {prompt}"
    messages = [HumanMessage(content=user_input)]

    result = abot.graph.invoke({"messages": messages})
    final_output = result['messages'][-1].content.strip()

    # If tool returned a file path to an image
    if os.path.exists(final_output) and final_output.endswith(".png"):
        return final_output
    else:
        return f"No plot image found. Raw response: {final_output}"

with gr.Blocks() as demo:
    gr.Markdown("### Chaptered - AI-Powered Novel Analyzer")
    gr.Markdown("""
    Upload your EPUB file and enter a prompt to analyze the novel.
    You can ask for a word frequency heatmap, sentiment arc, or chapter-wise word count plot.
    """)

    with gr.Row():
        with gr.Column():
            epub_input = gr.File(label="Upload EPUB", type="filepath")
            prompt_input = gr.Textbox(label="Prompt", placeholder="e.g., Generate word frequency heatmap.")
            analyze_button = gr.Button("Analyze")
            clear_btn = gr.Button("🧹 Clear")

        with gr.Column():
            output_image = gr.Image(label="Sentiment Arc or Heatmap or word-count", type="filepath")

    analyze_button.click(
        fn=query_agent,
        inputs=[epub_input, prompt_input],
        outputs=output_image
    )
    clear_btn.click(lambda: (None, "", None), outputs=[epub_input, prompt_input, output_image])


demo.launch(share=True)