File size: 36,804 Bytes
2b9215c 6f849c6 2b9215c 6f849c6 c9d2325 2b9215c 3983460 6f849c6 3983460 2b9215c 6f849c6 3a661f3 c2e34da 6f849c6 3a661f3 6f849c6 c2e34da 3a661f3 6f849c6 c2e34da 6f849c6 2b9215c bdcf915 2b9215c c2e34da 2b9215c c2e34da 2b9215c c2e34da 2b9215c 6f849c6 2b9215c 6f849c6 c2e34da 3983460 c2e34da 3983460 c2e34da 2b9215c bdcf915 2b9215c c2e34da 6f849c6 c2e34da 6f849c6 c2e34da 6f849c6 3a661f3 c2e34da 2b9215c 6f849c6 3a661f3 bdcf915 2b9215c c2e34da bdcf915 6f849c6 3a661f3 c2e34da 6f849c6 2b9215c c2e34da 6f849c6 c2e34da 2b9215c c2e34da 2b9215c c2e34da 2b9215c bdcf915 c2e34da 3a661f3 c2e34da 2b9215c bdcf915 6f849c6 3a661f3 c2e34da bdcf915 2b9215c 6f849c6 3a661f3 6f849c6 2b9215c 6f849c6 bdcf915 c2e34da 3983460 c2e34da bdcf915 3a661f3 c2e34da 2b9215c c2e34da 6f849c6 2b9215c 6f849c6 2b9215c bdcf915 c2e34da 2b9215c c2e34da 2b9215c c2e34da 2b9215c c2e34da 2b9215c c2e34da 2b9215c c2e34da 2b9215c c2e34da 2b9215c c9d2325 5c60138 c9d2325 2b9215c 6f849c6 2b9215c c2e34da 3983460 c2e34da 2b9215c bdcf915 c2e34da 2b9215c bdcf915 c2e34da 2b9215c c2e34da 2b9215c c2e34da 2b9215c c2e34da 2b9215c c2e34da 2b9215c bdcf915 c2e34da bdcf915 c2e34da 2b9215c bdcf915 2b9215c c2e34da 2b9215c bdcf915 2b9215c bdcf915 c2e34da 2b9215c bdcf915 2b9215c bdcf915 c2e34da 2b9215c c2e34da bdcf915 c2e34da bdcf915 2b9215c 6f849c6 c2e34da 3a661f3 bdcf915 3a661f3 bdcf915 c2e34da 3983460 c2e34da bdcf915 2b9215c bdcf915 2b9215c bdcf915 2b9215c c2e34da 3983460 c2e34da 2b9215c 3983460 c2e34da 3983460 c2e34da 2b9215c c2e34da 3983460 c2e34da 3a661f3 3983460 3a661f3 3983460 3a661f3 3983460 c2e34da bdcf915 2b9215c bdcf915 6f849c6 bdcf915 3a661f3 c2e34da 2b9215c c2e34da bdcf915 c2e34da 2b9215c 3983460 c2e34da bdcf915 c2e34da 2b9215c bdcf915 2b9215c c2e34da 2b9215c bdcf915 2b9215c c2e34da 2b9215c c2e34da 2b9215c 3983460 2b9215c c2e34da bdcf915 2b9215c bdcf915 c2e34da bdcf915 2b9215c c2e34da 2b9215c c2e34da bdcf915 2b9215c c2e34da bdcf915 2b9215c c2e34da bdcf915 2b9215c bdcf915 2b9215c c2e34da bdcf915 3983460 bdcf915 3983460 c2e34da bdcf915 2b9215c bdcf915 2b9215c c2e34da 2b9215c bdcf915 2b9215c c2e34da 2b9215c c2e34da 2b9215c bdcf915 2b9215c 3983460 c2e34da 2b9215c 3983460 fc57a4f 2b9215c fc57a4f bdcf915 2b9215c fc57a4f bdcf915 fc57a4f bdcf915 fc57a4f bdcf915 3983460 bdcf915 2b9215c fc57a4f bdcf915 fc57a4f bdcf915 c2e34da bdcf915 2b9215c fc57a4f bdcf915 fc57a4f bdcf915 3a661f3 bdcf915 fc57a4f bdcf915 2b9215c 8dec3f8 c9d2325 c2e34da bdcf915 c2e34da 2b9215c bdcf915 c2e34da 2b9215c c2e34da 3983460 c2e34da 3983460 c2e34da 2b9215c bdcf915 c2e34da 2b9215c c2e34da 2b9215c bdcf915 c2e34da 3983460 2b9215c 3983460 c2e34da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 |
#!/usr/bin/env python3
"""
Vietnamese Receipt Classification App for Hugging Face Spaces
Complete version with training logging support
"""
import os
import sys
import gradio as gr
import numpy as np
import json
import tempfile
from datetime import datetime
from pathlib import Path
import threading
import time
import io
from PIL import Image
import logging
import markdown
import re
# Add paths for imports
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, current_dir)
sys.path.insert(0, os.path.join(current_dir, 'src'))
# Google AI Studio imports
try:
import google.generativeai as genai
GOOGLE_AI_AVAILABLE = True
except ImportError:
GOOGLE_AI_AVAILABLE = False
print("⚠️ Google AI not available. Install: pip install google-generativeai")
# Project imports
try:
from config import Config
from src.trainer import ReceiptClassificationTrainer
from src.utils import predict_samples, preprocess_text_for_prediction
from src.logger_config import LoggerConfig
COMPONENTS_AVAILABLE = True
except ImportError as e:
print(f"⚠️ Project components not available: {e}")
COMPONENTS_AVAILABLE = False
# ====================================
# LOGGING SETUP FOR TRAINING ONLY
# ====================================
class TrainingLogCapture(logging.Handler):
"""Handler to capture training logs for Gradio display"""
def __init__(self):
super().__init__()
self.logs = []
self.max_logs = 200 # Increased from 100
def emit(self, record):
try:
msg = self.format(record)
timestamp = datetime.now().strftime('%H:%M:%S')
log_entry = f"[{timestamp}] {msg}"
self.logs.append(log_entry)
# Keep only last max_logs entries to prevent memory issues
if len(self.logs) > self.max_logs:
self.logs.pop(0)
except Exception:
self.handleError(record)
def get_logs(self, last_n=None):
"""Get last n log entries or all if n is None"""
if last_n is None:
return "\n".join(self.logs)
return "\n".join(self.logs[-last_n:])
def clear_logs(self):
"""Clear all logs"""
self.logs = []
# Create training log capture instance
training_log_capture = TrainingLogCapture()
training_log_capture.setFormatter(logging.Formatter('%(message)s'))
# ====================================
# GLOBAL VARIABLES
# ====================================
trained_model = None
feature_type = None
vectorizers = None
label_encoder = None
training_status = "Not started"
is_training = False
# ====================================
# GOOGLE AI VISION SETUP
# ====================================
def setup_google_ai():
"""Setup Google AI with API key from environment"""
if not GOOGLE_AI_AVAILABLE:
return None
api_key = os.getenv('GOOGLE_AI_API_KEY') or os.getenv('GOOGLE_API_KEY')
if not api_key:
print("❌ Google AI API key not found in environment variables")
return None
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-flash')
print("✅ Google AI Vision model initialized")
return model
except Exception as e:
print(f"❌ Error setting up Google AI: {e}")
return None
google_vision_model = setup_google_ai()
# ====================================
# TRAINING FUNCTIONS WITH LOGGING
# ====================================
def train_model_background():
"""Train model in background thread with logging"""
global trained_model, feature_type, vectorizers, label_encoder, training_status, is_training
if not COMPONENTS_AVAILABLE:
training_status = "❌ Training components not available"
training_log_capture.logs.append("[ERROR] Training components not available")
return
try:
is_training = True
training_status = "Starting training..."
# Clear previous logs
training_log_capture.clear_logs()
# Setup training logger with our capture handler
training_logger = LoggerConfig.setup_training_logger()
training_logger.addHandler(training_log_capture)
training_logger.info("🚀 Starting training process...")
print("🚀 Starting training process...") # Also print
# Check if dataset exists
if not os.path.exists(Config.DATA_FILE):
training_status = "Error: Dataset not found"
training_logger.error(f"Dataset {Config.DATA_FILE} not found")
print(f"❌ Dataset {Config.DATA_FILE} not found")
is_training = False
return
training_status = "Training in progress... (This may take 10-15 minutes)"
training_logger.info("Training started - this may take 10-15 minutes")
print("Training started - this may take 10-15 minutes")
# Initialize trainer (will use logging internally)
trainer = ReceiptClassificationTrainer(Config)
# Add the handler to trainer's logger as well
if hasattr(trainer, 'logger'):
trainer.logger.addHandler(training_log_capture)
# Run training pipeline
best_model, best_feature_type, results = trainer.run_full_pipeline()
# Set global variables
trained_model = best_model
feature_type = best_feature_type
vectorizers = trainer.feature_extractor.get_vectorizers()
label_encoder = trainer.data_loader.label_encoder
accuracy = results.get('accuracy', 0)
training_status = f"✅ Training completed! Accuracy: {accuracy:.4f}"
training_logger.info(f"✅ Training completed with {accuracy:.4f} accuracy")
print(f"✅ Training completed with {accuracy:.4f} accuracy")
except Exception as e:
training_status = f"❌ Training failed: {str(e)}"
training_log_capture.logs.append(f"[ERROR] Training failed: {str(e)}")
print(f"❌ Training failed: {str(e)}")
finally:
is_training = False
def get_training_status():
"""Get current training status and logs"""
# Get all logs for better visibility
log_text = training_log_capture.get_logs()
if not log_text:
log_text = "No logs yet... Click 'Start Training' to begin"
return training_status, log_text
def start_training():
"""Start training process with logging"""
global is_training
if not COMPONENTS_AVAILABLE:
return "❌ Training components not available", "Missing required modules"
if is_training:
return "⚠️ Training already in progress...", training_log_capture.get_logs()
thread = threading.Thread(target=train_model_background)
thread.daemon = True
thread.start()
return "🚀 Training started in background...", "Training initiated... Logs will appear here"
# ====================================
# VISION MODEL FUNCTIONS (NO LOGGING)
# ====================================
def extract_bill_description(image):
"""Extract bill description using Google Vision AI"""
if not GOOGLE_AI_AVAILABLE or google_vision_model is None:
return "❌ Google AI Vision không khả dụng. Vui lòng thiết lập GOOGLE_AI_API_KEY hoặc nhập mô tả thủ công."
try:
if image is None:
return "❌ Vui lòng upload ảnh hóa đơn"
# Convert image to PIL if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
# Prompt for Vietnamese receipt description
prompt = """
Bạn là một AI chuyên phân tích hóa đơn Việt Nam. Hãy mô tả chi tiết hóa đơn này theo định dạng sau:
Mô tả hóa đơn: [Tên cửa hàng/nhà hàng] - [Loại hình kinh doanh] - [Các món/sản phẩm chính] - [Tổng tiền] - [Ngày tháng nếu có] - [Địa điểm nếu có]
Ví dụ: "Hóa đơn thanh toán tại cửa hàng cà phê Feel Coffee với món Yogurt Very Berry giá 22.000 VND, thanh toán bằng tiền mặt"
Hãy mô tả hóa đơn trong ảnh theo format tương tự, bằng tiếng Việt:
"""
# Generate description
response = google_vision_model.generate_content([prompt, image])
description = response.text.strip()
if description:
return description
else:
return "❌ Không thể trích xuất thông tin từ ảnh. Vui lòng thử ảnh khác hoặc nhập mô tả thủ công."
except Exception as e:
return f"❌ Lỗi khi phân tích ảnh: {str(e)}"
def process_image_and_extract(image):
"""Process uploaded image and extract description"""
if image is None:
return "Vui lòng upload ảnh hóa đơn"
description = extract_bill_description(image)
return description
# function load and convert README
def load_readme():
"""Load and convert README.md to HTML for display"""
try:
with open("README.md", "r", encoding="utf-8") as file:
readme_content = file.read()
# Remove HF metadata header (between ---)
readme_content = re.sub(r'^---\n.*?\n---\n', '', readme_content, flags=re.DOTALL)
# Convert markdown to HTML
html_content = markdown.markdown(
readme_content,
extensions=[
'markdown.extensions.tables',
'markdown.extensions.fenced_code',
'markdown.extensions.codehilite',
'markdown.extensions.toc',
'markdown.extensions.nl2br'
]
)
# Add custom CSS for better styling
styled_html = f"""
<div style="padding: 20px; max-width: 1200px; margin: 0 auto;">
<style>
/* General styles */
h1 {{ color: #2c3e50; border-bottom: 3px solid #3498db; padding-bottom: 10px; }}
h2 {{ color: #34495e; margin-top: 30px; border-bottom: 2px solid #ecf0f1; padding-bottom: 8px; }}
h3 {{ color: #7f8c8d; margin-top: 20px; }}
/* Table styles */
table {{
border-collapse: collapse;
width: 100%;
margin: 20px 0;
box-shadow: 0 2px 3px rgba(0,0,0,0.1);
}}
th {{
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 12px;
text-align: left;
font-weight: bold;
}}
td {{
padding: 10px;
border-bottom: 1px solid #ecf0f1;
}}
tr:hover {{
background-color: #f8f9fa;
}}
/* Code block styles */
pre {{
background-color: #f8f9fa;
color: #212529;
padding: 15px;
border-radius: 8px;
overflow-x: auto;
margin: 15px 0;
}}
code {{
background-color: #ecf0f1;
padding: 2px 6px;
border-radius: 3px;
font-family: 'Courier New', monospace;
}}
pre code {{
background-color: transparent;
padding: 0;
}}
/* List styles */
ul, ol {{
margin: 15px 0;
padding-left: 30px;
}}
li {{
margin: 8px 0;
line-height: 1.6;
}}
/* Link styles */
a {{
color: #3498db;
text-decoration: none;
transition: color 0.3s;
}}
a:hover {{
color: #2980b9;
text-decoration: underline;
}}
/* Blockquote styles */
blockquote {{
border-left: 4px solid #3498db;
padding-left: 20px;
margin: 20px 0;
color: #7f8c8d;
font-style: italic;
}}
/* Horizontal rule */
hr {{
border: none;
height: 2px;
background: linear-gradient(90deg, transparent, #bdc3c7, transparent);
margin: 30px 0;
}}
/* Badge styles */
img[alt*="badge"] {{
margin: 0 5px;
}}
/* Emoji support */
.emoji {{
font-size: 1.2em;
margin: 0 3px;
}}
</style>
{html_content}
</div>
"""
return styled_html
except FileNotFoundError:
return """
<div style="padding: 20px; text-align: center;">
<h2 style="color: #e74c3c;">❌ README.md not found</h2>
<p>Please ensure README.md file exists in the root directory.</p>
</div>
"""
except Exception as e:
return f"""
<div style="padding: 20px; text-align: center;">
<h2 style="color: #e74c3c;">❌ Error loading README</h2>
<p>Error: {str(e)}</p>
</div>
"""
# ====================================
# PREDICTION FUNCTIONS (NO LOGGING)
# ====================================
def predict_bill_class(description):
"""Predict bill class from description"""
global trained_model, feature_type, vectorizers, label_encoder
if not COMPONENTS_AVAILABLE:
return "❌ Prediction components not available", "", "Components missing"
if trained_model is None:
return "❌ Model chưa được train. Vui lòng đợi quá trình training hoàn tất.", "", "Model not ready"
if not description or description.strip() == "":
return "❌ Vui lòng nhập mô tả hóa đơn", "", "Empty description"
try:
# Predict
predictions, probabilities = predict_samples(
[description], trained_model, feature_type, vectorizers, label_encoder
)
predicted_class = predictions[0]
confidence = max(probabilities[0])
# Get top 3 predictions
top_3_indices = np.argsort(probabilities[0])[-3:][::-1]
top_3_results = []
for i, idx in enumerate(top_3_indices, 1):
label = label_encoder.classes_[idx]
conf = probabilities[0][idx]
top_3_results.append(f"{i}. {label}: {conf:.3f}")
result_text = f"🎯 Dự đoán: {predicted_class}\n📊 Độ tin cậy: {confidence:.3f}"
top_3_text = "📊 Top 3 dự đoán:\n" + "\n".join(top_3_results)
status = f"✅ Đã phân loại thành công với độ tin cậy {confidence:.1%}"
return result_text, top_3_text, status
except Exception as e:
return f"❌ Lỗi khi dự đoán: {str(e)}", "", f"Error: {str(e)}"
def predict_from_image_and_text(image, manual_description):
"""Combined prediction from image and manual text"""
# Use manual description if provided, otherwise extract from image
if manual_description and manual_description.strip():
description = manual_description.strip()
source_info = "📝 Sử dụng mô tả thủ công"
elif image is not None:
description = extract_bill_description(image)
source_info = "🖼️ Trích xuất từ ảnh"
# Check if extraction failed
if description.startswith("❌"):
return description, "", description, description
else:
return "❌ Vui lòng upload ảnh hoặc nhập mô tả thủ công", "", "No input provided", ""
# Make prediction
result, top_3, status = predict_bill_class(description)
# Prepare full description info
full_description = f"{source_info}\n\n📄 Mô tả hóa đơn:\n{description}"
return result, top_3, status, full_description
# ====================================
# GRADIO INTERFACE
# ====================================
def create_interface():
"""Create Gradio interface with training logging only"""
# Custom CSS for scrollable log
css = """
.gradio-container {
max-width: 1200px !important;
}
.main-header {
text-align: center;
margin: 20px 0;
padding: 20px;
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 10px;
}
/* Make the log textarea scrollable */
textarea {
overflow-y: auto !important;
font-family: 'Courier New', monospace;
font-size: 12px;
}
"""
with gr.Blocks(title="Vietnamese Receipt Classification", css=css) as interface:
# Header
gr.HTML("""
<div class="main-header">
<h1>🧾 Vietnamese Receipt Classification</h1>
<p>Ứng dụng phân loại hóa đơn Việt Nam sử dụng GA-optimized Ensemble + Google AI Vision</p>
</div>
""")
with gr.Tabs():
# ====================================
# TAB 1: MODEL TRAINING
# ====================================
with gr.Tab("🚀 Model Training"):
gr.HTML("<h3>🏋️ Training Management</h3>")
with gr.Row():
train_btn = gr.Button("🚀 Start Training", variant="primary", size="lg")
refresh_btn = gr.Button("🔄 Refresh Status", variant="secondary")
status_display = gr.Textbox(
label="📊 Training Status",
value="Click 'Start Training' to begin",
interactive=False,
lines=2
)
# Increased lines and set max_lines for scrollability
log_display = gr.Textbox(
label="📝 Training Log (Scrollable)",
lines=20, # Increased from 10
max_lines=20, # Set max lines for scrolling
interactive=False,
placeholder="Training logs will appear here...",
autoscroll=True # Auto scroll to bottom
)
# Training info
gr.HTML("""
<div style="margin-top: 20px; padding: 20px; background-color: #f8f9fa; border-radius: 8px; border-left: 4px solid #007bff;">
<h4>📋 Training Information</h4>
<ul style="margin: 10px 0; padding-left: 20px;">
<li><strong>Algorithm:</strong> GA-optimized Voting Ensemble (KNN + Decision Tree + Naive Bayes)</li>
<li><strong>Features:</strong> BoW, TF-IDF, Sentence Embeddings (all-MiniLM-L6-v2)</li>
<li><strong>Optimization:</strong> Genetic Algorithm (Population: 30, Generations: 15)</li>
<li><strong>Evaluation:</strong> 3-fold Cross-Validation</li>
<li><strong>Expected Time:</strong> 10-15 minutes on free tier</li>
<li><strong>Expected Accuracy:</strong> 85-95% depending on dataset quality</li>
<li><strong>Logging:</strong> All outputs are captured in scrollable log above</li>
<li><strong>Refresh:</strong> Click refresh button to update logs during training</li>
</ul>
</div>
""")
# Event handlers for training tab
train_btn.click(fn=start_training, outputs=[status_display, log_display])
refresh_btn.click(fn=get_training_status, outputs=[status_display, log_display])
# ====================================
# TAB 2: BILL CLASSIFICATION
# ====================================
with gr.Tab("🔮 Bill Classification"):
gr.HTML("<h3>🎯 Phân loại hóa đơn từ ảnh hoặc text</h3>")
with gr.Row():
# Left column - Input
with gr.Column(scale=1):
gr.HTML("<h4>📸 Upload ảnh hóa đơn</h4>")
image_input = gr.Image(
label="Ảnh hóa đơn",
type="pil",
height=250
)
extract_btn = gr.Button("🔍 Trích xuất mô tả từ ảnh", variant="secondary")
gr.HTML("<h4>📝 Hoặc nhập mô tả thủ công</h4>")
manual_input = gr.Textbox(
label="Mô tả hóa đơn",
placeholder="Ví dụ: Hóa đơn thanh toán tại cửa hàng cà phê Feel Coffee với món Yogurt Very Berry giá 22.000 VND",
lines=4
)
predict_btn = gr.Button("🎯 Dự đoán phân loại", variant="primary", size="lg")
# Right column - Output
with gr.Column(scale=1):
gr.HTML("<h4>📄 Thông tin đã xử lý</h4>")
processed_info = gr.Textbox(
label="Nguồn và mô tả",
lines=6,
interactive=False
)
gr.HTML("<h4>🎯 Kết quả phân loại</h4>")
result_display = gr.Textbox(
label="Dự đoán chính",
lines=3,
interactive=False
)
top3_display = gr.Textbox(
label="Top 3 dự đoán",
lines=4,
interactive=False
)
status_output = gr.Textbox(
label="Trạng thái",
lines=2,
interactive=False
)
# Examples section
gr.HTML("""
<div style="margin-top: 20px; padding: 15px; background-color: #e8f4fd; border-radius: 8px;">
<h4>💡 Ví dụ các loại hóa đơn</h4>
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px; margin-top: 10px;">
<div>
<ul style="margin: 0; padding-left: 20px;">
<li><strong>Ăn uống ngoài hàng:</strong> Nhà hàng, quán cà phê, fast food</li>
<li><strong>Siêu thị tổng hợp:</strong> VinMart, Co.opMart, Big C, Lotte</li>
</ul>
</div>
<div>
<ul style="margin: 0; padding-left: 20px;">
<li><strong>Sữa & Đồ uống:</strong> Sữa, nước ngọt, đồ uống các loại</li>
<li><strong>Tiện ích:</strong> Điện, nước, internet, di động</li>
</ul>
</div>
</div>
</div>
""")
# Event handlers for classification tab
extract_btn.click(
fn=process_image_and_extract,
inputs=[image_input],
outputs=[manual_input]
)
predict_btn.click(
fn=predict_from_image_and_text,
inputs=[image_input, manual_input],
outputs=[result_display, top3_display, status_output, processed_info]
)
# ====================================
# TAB 3: ABOUT & HELP
# ====================================
with gr.Tab("ℹ️ About & Help"):
gr.HTML("""
<div style="padding: 20px;">
<h2 style="color: #2c3e50;">🧾 Vietnamese Receipt Classification System</h2>
<div class="info-section">
<h3>🎯 Tính năng chính</h3>
<ul>
<li><strong>🤖 AI Vision:</strong> Trích xuất mô tả từ ảnh hóa đơn bằng Google Gemini Vision API</li>
<li><strong>🧬 GA Optimization:</strong> Tối ưu hóa ensemble classifier bằng Genetic Algorithm</li>
<li><strong>📊 Multi-feature:</strong> Kết hợp BoW, TF-IDF và Sentence Embeddings</li>
<li><strong>🗳️ Voting Ensemble:</strong> KNN + Decision Tree + Naive Bayes với trọng số tối ưu</li>
<li><strong>⚡ Real-time:</strong> Training và prediction trực tiếp trên web</li>
</ul>
</div>
<div class="example-section">
<h3>🔧 Công nghệ sử dụng</h3>
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 15px;">
<div>
<h4 style="color: #0d47a1;">Machine Learning:</h4>
<ul style="color: #1565c0;">
<li>scikit-learn</li>
<li>sentence-transformers</li>
<li>DEAP (Genetic Algorithm)</li>
</ul>
</div>
<div>
<h4 style="color: #0d47a1;">AI Vision:</h4>
<ul style="color: #1565c0;">
<li>Google Gemini Vision</li>
<li>PIL (Image Processing)</li>
<li>Gradio Interface</li>
</ul>
</div>
</div>
</div>
<div class="success-section">
<h3>🚀 Hướng dẫn sử dụng</h3>
<ol style="color: #155724;">
<li><strong>Training:</strong> Bắt đầu với tab "🚀 Model Training", click "Start Training" và đợi 10-15 phút</li>
<li><strong>Monitor:</strong> Click "Refresh Status" để cập nhật logs trong quá trình training</li>
<li><strong>Classification:</strong> Chuyển sang tab "🔮 Bill Classification"</li>
<li><strong>Upload ảnh:</strong> Kéo thả ảnh hóa đơn vào khung "Upload ảnh hóa đơn"</li>
<li><strong>Extract text:</strong> Click "🔍 Trích xuất mô tả từ ảnh" (cần Google AI API key)</li>
<li><strong>Manual input:</strong> Hoặc nhập mô tả thủ công vào text box</li>
<li><strong>Predict:</strong> Click "🎯 Dự đoán phân loại" để xem kết quả</li>
<li><strong>Results:</strong> Xem dự đoán chính + top 3 alternatives với confidence scores</li>
</ol>
</div>
<div class="warning-section">
<h3>⚠️ Lưu ý quan trọng</h3>
<ul style="color: #856404;">
<li><strong>Google AI API:</strong> Để sử dụng tính năng trích xuất từ ảnh, cần thiết lập GOOGLE_AI_API_KEY trong environment variables</li>
<li><strong>Dataset:</strong> App cần file viet_receipt_categorized_label.xlsx để training</li>
<li><strong>Memory:</strong> Training có thể tốn nhiều RAM, nên dùng trên máy có đủ bộ nhớ</li>
<li><strong>Time:</strong> Quá trình training mất 10-15 phút, vui lòng kiên nhẫn</li>
<li><strong>Logs:</strong> Training log có thể scroll để xem toàn bộ quá trình</li>
</ul>
</div>
<div style="text-align: center; margin-top: 30px; padding: 20px; background: linear-gradient(45deg, #2c3e50, #3498db); color: white; border-radius: 8px;">
<h3>🎉 Developed with ❤️ for Vietnamese NLP Community</h3>
<p>Powered by Hugging Face 🤗 | Google AI Studio | Gradio</p>
</div>
</div>
""")
with gr.Tab("📚 Documentation"):
gr.HTML("<h3>📖 Complete Project Documentation</h3>")
# Refresh button để reload README
with gr.Row():
refresh_docs_btn = gr.Button(
"🔄 Refresh Documentation",
variant="secondary",
size="sm"
)
# Search box cho documentation
search_box = gr.Textbox(
placeholder="🔍 Search in documentation...",
label="Search",
scale=3
)
# README content display
readme_display = gr.HTML(
value=load_readme(),
label="README Documentation"
)
# JavaScript for search functionality
gr.HTML("""
<script>
function searchInDocs() {
const searchTerm = document.querySelector('input[placeholder*="Search in documentation"]').value.toLowerCase();
const content = document.querySelector('[label="README Documentation"]');
if (!searchTerm) {
// Remove all highlights if search is empty
content.innerHTML = content.innerHTML.replace(/<mark[^>]*>(.*?)<\/mark>/gi, '$1');
return;
}
// Remove previous highlights
content.innerHTML = content.innerHTML.replace(/<mark[^>]*>(.*?)<\/mark>/gi, '$1');
// Add new highlights
const regex = new RegExp(`(${searchTerm})`, 'gi');
content.innerHTML = content.innerHTML.replace(regex, '<mark style="background-color: yellow; padding: 2px;">$1</mark>');
// Scroll to first match
const firstMatch = content.querySelector('mark');
if (firstMatch) {
firstMatch.scrollIntoView({ behavior: 'smooth', block: 'center' });
}
}
// Add event listener when page loads
document.addEventListener('DOMContentLoaded', function() {
const searchInput = document.querySelector('input[placeholder*="Search in documentation"]');
if (searchInput) {
searchInput.addEventListener('input', searchInDocs);
}
});
</script>
""")
# Quick navigation links
gr.HTML("""
<div style="margin-top: 20px; padding: 15px; background-color: #f8f9fa; border-radius: 8px;">
<h4>⚡ Quick Links</h4>
<div style="display: flex; flex-wrap: wrap; gap: 10px; margin-top: 10px;">
<a href="#overview" style="padding: 5px 15px; background: #3498db; color: white; border-radius: 5px; text-decoration: none;">Overview</a>
<a href="#quick-deployment-guide" style="padding: 5px 15px; background: #2ecc71; color: white; border-radius: 5px; text-decoration: none;">Deployment</a>
<a href="#user-guide" style="padding: 5px 15px; background: #e74c3c; color: white; border-radius: 5px; text-decoration: none;">User Guide</a>
<a href="#technical-architecture" style="padding: 5px 15px; background: #9b59b6; color: white; border-radius: 5px; text-decoration: none;">Technical</a>
<a href="#troubleshooting" style="padding: 5px 15px; background: #f39c12; color: white; border-radius: 5px; text-decoration: none;">Troubleshooting</a>
<a href="#requirements" style="padding: 5px 15px; background: #34495e; color: white; border-radius: 5px; text-decoration: none;">Requirements</a>
</div>
</div>
""")
# Event handler for refresh button
refresh_docs_btn.click(
fn=load_readme,
outputs=[readme_display]
)
# Optional: Add a download button for README
gr.HTML("""
<div style="margin-top: 20px; text-align: center;">
<a href="README.md" download="README.md"
style="display: inline-block; padding: 10px 20px; background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
color: white; border-radius: 5px; text-decoration: none; font-weight: bold;">
📥 Download README.md
</a>
</div>
""")
# Load initial status when interface starts
interface.load(fn=get_training_status, outputs=[status_display, log_display])
return interface
# ====================================
# MAIN APPLICATION
# ====================================
if __name__ == "__main__":
print("🚀 Starting Vietnamese Receipt Classification App...")
print("="*60)
# Check dependencies
print("📋 Checking dependencies...")
if COMPONENTS_AVAILABLE:
print("✅ Project components: Ready")
# Check dataset
try:
if os.path.exists(Config.DATA_FILE):
print(f"✅ Dataset: Found {Config.DATA_FILE}")
else:
print(f"⚠️ Dataset: {Config.DATA_FILE} not found")
except:
print("⚠️ Config not available")
else:
print("⚠️ Project components: Not available")
if GOOGLE_AI_AVAILABLE and google_vision_model is not None:
print("✅ Google AI Vision: Ready")
else:
print("⚠️ Google AI Vision: Not available")
print(" 💡 Set GOOGLE_AI_API_KEY environment variable to enable")
print("🎨 Creating Gradio interface...")
app = create_interface()
print("🌐 Launching app...")
print("="*60)
# Launch the app
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |