Spaces:
Sleeping
Sleeping
File size: 12,533 Bytes
d91ea77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
from dataclasses import dataclass
import torch
from torch import nn
import torch.nn.functional as F
import os
from utils import get_file_FROM_HF
from safetensors.torch import load_file
@dataclass
class TransformerConfig:
src_vocab_size: int = 32000
tgt_vocab_size: int = 32000
max_seq_length: int = 64
d_model: int = 512
num_heads: int = 8
num_encoder_layers: int = 6
num_decoder_layers: int = 6
dropout_p: float = 0.1
dff: int = 2048
device: str = 'cpu'
# Source Embedding block
class SourceEmbedding(nn.Module):
def __init__(self, config: TransformerConfig):
super().__init__()
self.src_embedding = nn.Embedding(num_embeddings=config.src_vocab_size, embedding_dim=config.d_model)
def forward(self, x):
x = self.src_embedding(x)
return x
# Target Embedding block
class TargetEmbedding(nn.Module):
def __init__(self, config: TransformerConfig):
super().__init__()
self.tgt_embedding = nn.Embedding(num_embeddings=config.tgt_vocab_size, embedding_dim=config.d_model)
def forward(self, x):
x = self.tgt_embedding(x)
return x
# Position Encoding (PE)
class PositionEncoding(nn.Module):
def __init__(self, config: TransformerConfig, require_grad=False):
super().__init__()
self.PE = torch.zeros(config.max_seq_length, config.d_model)
pos = torch.arange(0, config.max_seq_length).reshape(-1, 1)
i = torch.arange(0, config.d_model, step=2)
denominator = torch.pow(10000, (2*i) / config.d_model)
self.PE[:, 0::2] = torch.sin(pos/denominator)
self.PE[:, 1::2] = torch.cos(pos/denominator)
self.PE = nn.Parameter(self.PE, requires_grad=require_grad)
def forward(self, x):
max_seq_length = x.shape[1]
return x + self.PE[:max_seq_length]
# Muti Head Attention block for (Multi Head Attention, Masked Multi Head Attention and Cross Multi Heads Attention)
class MultiheadAttention(nn.Module):
def __init__(self, config:TransformerConfig):
super().__init__()
self.config = config
# check if the d_model is divided by num_heads to get the head dim
assert config.d_model % self.config.num_heads == 0, "The d_model is not divided by the num of heads"
self.head_dim = self.config.d_model // self.config.num_heads
self.q_proj = nn.Linear(in_features=self.config.d_model, out_features=self.config.d_model)
self.k_proj = nn.Linear(in_features=self.config.d_model, out_features=self.config.d_model)
self.v_proj = nn.Linear(in_features=self.config.d_model, out_features=self.config.d_model)
self.out_proj = nn.Linear(in_features=self.config.d_model, out_features=self.config.d_model)
def forward(self, src, tgt=None, attention_mask=None, causal=False):
batch, src_seq_length, d_model = src.shape
if tgt is None:
q = self.q_proj(src).reshape(batch, src_seq_length, self.config.num_heads, self.head_dim).transpose(1,2).contiguous()
k = self.k_proj(src).reshape(batch, src_seq_length, self.config.num_heads, self.head_dim).transpose(1,2).contiguous()
v = self.v_proj(src).reshape(batch, src_seq_length, self.config.num_heads, self.head_dim).transpose(1,2).contiguous()
#MASKED MULTI HEAD ATTENTION
if attention_mask is not None:
attention_mask = attention_mask.bool()
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1).repeat(1,1,src_seq_length,1).to(self.config.device)
if causal and attention_mask is not None:
# compute new mask (pad mask + causal mask)
causal_mask = ~torch.triu(torch.ones((src_seq_length, src_seq_length), dtype=torch.bool), diagonal=1)
causal_mask = causal_mask.unsqueeze(0).unsqueeze(0).to(self.config.device)
combined_mask = causal_mask.int() * attention_mask.int()
attention_mask = combined_mask.bool().to(self.config.device)
# torch.set_printoptions(threshold=torch.inf)
attention_out = F.scaled_dot_product_attention(q,k,v,
attn_mask=attention_mask,
dropout_p=self.config.dropout_p if self.training else 0.0,
is_causal=False)
# CROSS ATTENTION
else:
tgt_seq_length = tgt.shape[1]
q = self.q_proj(tgt).reshape(batch, tgt_seq_length, self.config.num_heads, self.head_dim).transpose(1,2).contiguous()
k = self.k_proj(src).reshape(batch, src_seq_length, self.config.num_heads, self.head_dim).transpose(1,2).contiguous()
v = self.v_proj(src).reshape(batch, src_seq_length, self.config.num_heads, self.head_dim).transpose(1,2).contiguous()
if attention_mask is not None:
attention_mask = attention_mask.bool()
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1).repeat(1,1,tgt_seq_length,1)
attention_out = F.scaled_dot_product_attention(q,k,v,
attn_mask=attention_mask,
dropout_p=self.config.dropout_p if self.training else 0.0,
is_causal=False)
attention_out = attention_out.transpose(1,2).flatten(2)
attention_out = self.out_proj(attention_out)
return attention_out
# Position Wise Feed Forward Network (MLP)
class FeedForward(nn.Module):
def __init__(self, config: TransformerConfig):
super().__init__()
self.hidden_layer = nn.Linear(in_features=config.d_model, out_features=config.dff) #eg: 512 -> 2048
self.hidden_dropout = nn.Dropout(p=config.dropout_p)
self.output_layer = nn.Linear(in_features=config.dff, out_features=config.d_model) #eg : 2048 - > 512
self.output_dropout = nn.Dropout(p=config.dropout_p)
def forward(self, x):
x = self.hidden_layer(x)
x = F.gelu(x)
x = self.hidden_dropout(x)
x = self.output_layer(x)
x = self.output_dropout(x)
return x
# Encoder block
class EncoderBlock(nn.Module):
def __init__(self, config: TransformerConfig):
super().__init__()
self.multi_head_attention = MultiheadAttention(config=config)
self.feed_forward = FeedForward(config=config)
self.layer_norm_1 = nn.LayerNorm(config.d_model)
self.layer_norm_2 = nn.LayerNorm(config.d_model)
self.dropout = nn.Dropout(config.dropout_p)
def forward(self, x, attention_mask=None):
x = x + self.dropout(self.multi_head_attention(src=x, attention_mask=attention_mask))
x = self.layer_norm_1(x)
x = x + self.feed_forward(x)
x = self.layer_norm_2(x)
return x
# Decoder block
class DecoderBlock(nn.Module):
def __init__(self, config: TransformerConfig):
super().__init__()
self.masked_multi_head_attention = MultiheadAttention(config=config)
self.dropout_masked = nn.Dropout(config.dropout_p)
self.cross_multi_head_attention = MultiheadAttention(config=config)
self.dropout_cross = nn.Dropout(config.dropout_p)
self.feed_forward = FeedForward(config=config)
self.layer_norm_1 = nn.LayerNorm(config.d_model)
self.layer_norm_2 = nn.LayerNorm(config.d_model)
self.layer_norm_3 = nn.LayerNorm(config.d_model)
def forward(self, src,tgt, src_attention_mask=None, tgt_attention_mask=None):
tgt = tgt + self.dropout_masked(self.masked_multi_head_attention(tgt, attention_mask=tgt_attention_mask, causal=True))
tgt = self.layer_norm_1(tgt)
tgt = tgt + self.dropout_cross(self.cross_multi_head_attention(src, tgt, attention_mask=src_attention_mask))
tgt = self.layer_norm_2(tgt)
tgt = tgt + self.feed_forward(tgt)
return tgt
# Transformer (put it all together)
class Transformer(nn.Module):
def __init__(self, config: TransformerConfig):
super().__init__()
self.src_embedding = SourceEmbedding(config=config)
self.tgt_embedding = TargetEmbedding(config=config)
self.position_encoding = PositionEncoding(config=config)
self.encoder = nn.ModuleList(
[EncoderBlock(config=config) for _ in range(config.num_encoder_layers)]
)
self.decoder = nn.ModuleList(
[DecoderBlock(config=config) for _ in range(config.num_decoder_layers)]
)
self.output = nn.Linear(config.d_model, config.tgt_vocab_size)
## Init weights
self.apply(_init_weights_)
def forward(self, src_ids, tgt_ids, src_attention_mask=None, tgt_attention_mask=None):
# embed token ids
src_embed = self.src_embedding(src_ids)
tgt_embed = self.tgt_embedding(tgt_ids)
# add position encoding
src_embed = self.position_encoding(src_embed)
tgt_embed = self.position_encoding(tgt_embed)
for layer in self.encoder:
src_embed = layer(src_embed, src_attention_mask)
for layer in self.decoder:
tgt_embed = layer(src_embed, tgt_embed, src_attention_mask, tgt_attention_mask)
pred = self.output(tgt_embed)
return pred
@torch.no_grad()
def inference(self, src_ids, tgt_start_id, tgt_end_id, max_seq_length):
tgt_ids = torch.tensor([tgt_start_id], device=src_ids.device).reshape(1,1)
#Encode the source
src_embed = self.src_embedding(src_ids)
src_embed = self.position_encoding(src_embed)
for layer in self.encoder:
src_embed = layer(src_embed)
#Generate Target
for i in range(max_seq_length):
tgt_embed = self.tgt_embedding(tgt_ids)
tgt_embed = self.position_encoding(tgt_embed)
for layer in self.decoder:
tgt_embed = layer(src_embed, tgt_embed)
tgt_embed = tgt_embed[:, -1]
pred = self.output(tgt_embed)
pred = pred.argmax(axis=-1).unsqueeze(0)
tgt_ids = torch.cat([tgt_ids, pred], axis=-1)
if torch.all(pred == tgt_end_id):
break
return tgt_ids.squeeze().cpu().tolist()
def load_weights_from_checkpoints(self, path_to_checkpoints):
if not os.path.exists(path_to_checkpoints):
print("------------------- LOADING MODEL CHECKPOINTS FROM HUGGING FACE --------------------------")
folder = os.path.dirname(path_to_checkpoints)
os.makedirs(folder, exist_ok=True)
path_to_checkpoints = get_file_FROM_HF(repo_id="ngia/ml-translation-en-fr", file_path="final_checkpoint/model.safetensors", local_dir=folder)
chekpoints = load_file(filename=path_to_checkpoints)
self.load_state_dict(chekpoints)
return self
def _init_weights_(module):
"""
Simple weight intialization taken directly from the huggingface
`modeling_roberta.py` implementation!
"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if __name__ == "__main__":
config = TransformerConfig()
model = Transformer(config=config)
english = torch.randint(low=0, high=1000, size=(1,3))
res = model.inference(src_ids=english, tgt_start_id=1, tgt_end_id=2, max_seq_length=config.max_seq_length)
print(res)
|