File size: 5,576 Bytes
699163a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import datetime
import traceback
from pathlib import Path

import pandas as pd
import torch
from datasets import load_dataset
from tqdm import tqdm

from modules import shared
from modules.models import load_model, unload_model
from modules.text_generation import encode
from server import get_model_specific_settings, update_model_parameters


def load_past_evaluations():
    if Path('logs/evaluations.csv').exists():
        df = pd.read_csv(Path('logs/evaluations.csv'), dtype=str)
        df['Perplexity'] = pd.to_numeric(df['Perplexity'])
        return df
    else:
        return pd.DataFrame(columns=['Model', 'LoRAs', 'Dataset', 'Perplexity', 'stride', 'max_length', 'Date', 'Comment'])


past_evaluations = load_past_evaluations()


def save_past_evaluations(df):
    global past_evaluations
    past_evaluations = df
    df.to_csv(Path('logs/evaluations.csv'), index=False)


def calculate_perplexity(models, input_dataset, stride, _max_length):
    '''
    Based on:
    https://huggingface.co/docs/transformers/perplexity#calculating-ppl-with-fixedlength-models
    '''

    global past_evaluations
    cumulative_log = ''
    cumulative_log += "Loading the input dataset...\n"
    yield cumulative_log

    # Copied from https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/triton/utils/datautils.py
    if input_dataset == 'wikitext':
        data = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')
        text = "\n\n".join(data['text'])
    elif input_dataset == 'ptb':
        data = load_dataset('ptb_text_only', 'penn_treebank', split='validation')
        text = "\n\n".join(data['sentence'])
    elif input_dataset == 'ptb_new':
        data = load_dataset('ptb_text_only', 'penn_treebank', split='test')
        text = " ".join(data['sentence'])
    else:
        with open(Path(f'training/datasets/{input_dataset}.txt'), 'r', encoding='utf-8') as f:
            text = f.read()

    for model in models:
        if is_in_past_evaluations(model, input_dataset, stride, _max_length):
            cumulative_log += f"{model} has already been tested. Ignoring.\n"
            yield cumulative_log
            continue

        if model != 'current model':
            try:
                yield cumulative_log + f"Loading {model}...\n"
                model_settings = get_model_specific_settings(model)
                shared.settings.update(model_settings)  # hijacking the interface defaults
                update_model_parameters(model_settings)  # hijacking the command-line arguments
                shared.model_name = model
                unload_model()
                shared.model, shared.tokenizer = load_model(shared.model_name)
            except:
                cumulative_log += f"Failed to load {model}. Moving on.\n"
                yield cumulative_log
                continue

        cumulative_log += f"Processing {model}...\n"
        yield cumulative_log + "Tokenizing the input dataset...\n"
        encodings = encode(text, add_special_tokens=False)
        seq_len = encodings.shape[1]
        max_length = _max_length or shared.model.config.max_position_embeddings
        nlls = []
        prev_end_loc = 0
        for begin_loc in tqdm(range(0, seq_len, stride)):
            yield cumulative_log + f"Evaluating... {100*begin_loc/seq_len:.2f}%"
            end_loc = min(begin_loc + max_length, seq_len)
            trg_len = end_loc - prev_end_loc  # may be different from stride on last loop
            input_ids = encodings[:, begin_loc:end_loc]
            target_ids = input_ids.clone()
            target_ids[:, :-trg_len] = -100

            with torch.no_grad():
                outputs = shared.model(input_ids, labels=target_ids)

                # loss is calculated using CrossEntropyLoss which averages over valid labels
                # N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels
                # to the left by 1.
                neg_log_likelihood = outputs.loss

            nlls.append(neg_log_likelihood)

            prev_end_loc = end_loc
            if end_loc == seq_len:
                break

        ppl = torch.exp(torch.stack(nlls).mean())
        add_entry_to_past_evaluations(float(ppl), shared.model_name, input_dataset, stride, _max_length)
        save_past_evaluations(past_evaluations)
        cumulative_log += f"Done. The perplexity is: {float(ppl)}\n\n"
        yield cumulative_log


def add_entry_to_past_evaluations(perplexity, model, dataset, stride, max_length):
    global past_evaluations
    entry = {
        'Model': model,
        'LoRAs': ', '.join(shared.lora_names) or '-',
        'Dataset': dataset,
        'Perplexity': perplexity,
        'stride': str(stride),
        'max_length': str(max_length),
        'Date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
        'Comment': ''
    }
    past_evaluations = pd.concat([past_evaluations, pd.DataFrame([entry])], ignore_index=True)


def is_in_past_evaluations(model, dataset, stride, max_length):
    entries = past_evaluations[(past_evaluations['Model'] == model) &
                               (past_evaluations['Dataset'] == dataset) &
                               (past_evaluations['max_length'] == str(max_length)) &
                               (past_evaluations['stride'] == str(stride))]

    if entries.shape[0] > 0:
        return True
    else:
        return False


def generate_markdown_table():
    sorted_df = past_evaluations.sort_values(by=['Dataset', 'stride', 'Perplexity', 'Date'])
    return sorted_df