File size: 2,992 Bytes
699163a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import gc
import traceback
from queue import Queue
from threading import Thread

import torch
import transformers

import modules.shared as shared


class _SentinelTokenStoppingCriteria(transformers.StoppingCriteria):

    def __init__(self, sentinel_token_ids: list, starting_idx: int):
        transformers.StoppingCriteria.__init__(self)
        self.sentinel_token_ids = sentinel_token_ids
        self.starting_idx = starting_idx
        self.shortest = min([x.shape[-1] for x in sentinel_token_ids])

    def __call__(self, input_ids: torch.LongTensor, _scores: torch.FloatTensor) -> bool:
        for sample in input_ids:
            trimmed_sample = sample[self.starting_idx:]
            trimmed_len = trimmed_sample.shape[-1]
            if trimmed_len < self.shortest:
                continue

            for sentinel in self.sentinel_token_ids:
                sentinel_len = sentinel.shape[-1]
                if trimmed_len < sentinel_len:
                    continue

                window = trimmed_sample[-sentinel_len:]
                if torch.all(torch.eq(sentinel, window)):
                    return True

        return False


class Stream(transformers.StoppingCriteria):
    def __init__(self, callback_func=None):
        self.callback_func = callback_func

    def __call__(self, input_ids, scores) -> bool:
        if self.callback_func is not None:
            self.callback_func(input_ids[0])
        return False


class Iteratorize:

    """
    Transforms a function that takes a callback
    into a lazy iterator (generator).

    Adapted from: https://stackoverflow.com/a/9969000
    """

    def __init__(self, func, kwargs=None, callback=None):
        self.mfunc = func
        self.c_callback = callback
        self.q = Queue()
        self.sentinel = object()
        self.kwargs = kwargs or {}
        self.stop_now = False

        def _callback(val):
            if self.stop_now or shared.stop_everything:
                raise ValueError
            self.q.put(val)

        def gentask():
            try:
                ret = self.mfunc(callback=_callback, **self.kwargs)
            except ValueError:
                pass
            except:
                traceback.print_exc()
                pass

            clear_torch_cache()
            self.q.put(self.sentinel)
            if self.c_callback:
                self.c_callback(ret)

        self.thread = Thread(target=gentask)
        self.thread.start()

    def __iter__(self):
        return self

    def __next__(self):
        obj = self.q.get(True, None)
        if obj is self.sentinel:
            raise StopIteration
        else:
            return obj

    def __del__(self):
        clear_torch_cache()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.stop_now = True
        clear_torch_cache()


def clear_torch_cache():
    gc.collect()
    if not shared.args.cpu:
        torch.cuda.empty_cache()