Spaces:
Runtime error
Runtime error
File size: 13,900 Bytes
2e2adc3 9f50b66 2e2adc3 9f50b66 27d3bc5 2e2adc3 27d3bc5 737aeb3 cfd243f 2e2adc3 27d3bc5 cfd243f 2e2adc3 27d3bc5 134cf2b 27d3bc5 2e2adc3 27d3bc5 2e2adc3 27d3bc5 2e2adc3 27d3bc5 2e2adc3 27d3bc5 737aeb3 27d3bc5 2e2adc3 27d3bc5 2e2adc3 cfd243f 3f4fdab 2e2adc3 3f4fdab 2e2adc3 cfd243f 3f4fdab cfd243f 27d3bc5 cfd243f 27d3bc5 cfd243f 2e2adc3 3f4fdab cfd243f 3f4fdab cfd243f 2e2adc3 27d3bc5 737aeb3 f5b2ba1 9f50b66 f5b2ba1 9f50b66 134cf2b 737aeb3 27d3bc5 737aeb3 eb5a789 737aeb3 ee09015 fc6b60f ee09015 737aeb3 fc6b60f 737aeb3 85e60a5 134cf2b 27d3bc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import os
import threading
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
from music.search import get_random_spit, get_albums, search_youtube, download_youtube, get_youtube, download_random
from vits.models import SynthesizerInfer
import whisper.inference
from omegaconf import OmegaConf
import torchcrepe
import torch
import io
import gradio as gr
import librosa
import numpy as np
import soundfile
import random
from spleeter.separator import Separator
from spleeter.audio.adapter import AudioAdapter
from pydub import AudioSegment
import uuid
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
def load_svc_model(checkpoint_path, model):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
saved_state_dict = checkpoint_dict["model_g"]
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
new_state_dict[k] = saved_state_dict[k]
model.load_state_dict(new_state_dict)
return model
def compute_f0_nn(filename, device):
audio, sr = librosa.load(filename, sr=16000)
assert sr == 16000
# Load audio
audio = torch.tensor(np.copy(audio))[None]
# Here we'll use a 20 millisecond hop length
hop_length = 320
# Provide a sensible frequency range for your domain (upper limit is 2006 Hz)
# This would be a reasonable range for speech
fmin = 50
fmax = 1000
# Select a model capacity--one of "tiny" or "full"
model = "full"
# Pick a batch size that doesn't cause memory errors on your gpu
batch_size = 512
# Compute pitch using first gpu
pitch, periodicity = torchcrepe.predict(
audio,
sr,
hop_length,
fmin,
fmax,
model,
batch_size=batch_size,
device=device,
return_periodicity=True,
)
pitch = np.repeat(pitch, 2, -1) # 320 -> 160 * 2
periodicity = np.repeat(periodicity, 2, -1) # 320 -> 160 * 2
# CREPE was not trained on silent audio. some error on silent need filter.
periodicity = torchcrepe.filter.median(periodicity, 9)
pitch = torchcrepe.filter.mean(pitch, 9)
pitch[periodicity < 0.1] = 0
pitch = pitch.squeeze(0)
return pitch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
hp = OmegaConf.load("configs/base.yaml")
model = SynthesizerInfer(
hp.data.filter_length // 2 + 1,
hp.data.segment_size // hp.data.hop_length,
hp)
load_svc_model("vits_pretrain/sovits5.0-48k-debug.pth", model)
model.eval()
model.to(device)
separator = Separator('spleeter:2stems')
audio_loader = AudioAdapter.default()
whisper_model = whisper.inference.load_model(os.path.join("whisper_pretrain", "medium.pt"))
# warm up
separator.separate_to_file('warm.wav', '/tmp/warm')
def svc_change(argswave, argsspk):
argsppg = "svc_tmp.ppg.npy"
whisper.inference.pred_ppg(whisper_model, argswave, argsppg)
# os.system(f"python whisper/inference.py -w {argswave} -p {argsppg}")
spk = np.load(argsspk)
spk = torch.FloatTensor(spk)
ppg = np.load(argsppg)
ppg = np.repeat(ppg, 2, 0) # 320 PPG -> 160 * 2
ppg = torch.FloatTensor(ppg)
pit = compute_f0_nn(argswave, device)
pit = torch.FloatTensor(pit)
len_pit = pit.size()[0]
len_ppg = ppg.size()[0]
len_min = min(len_pit, len_ppg)
pit = pit[:len_min]
ppg = ppg[:len_min, :]
with torch.no_grad():
spk = spk.unsqueeze(0).to(device)
source = pit.unsqueeze(0).to(device)
source = model.pitch2source(source)
hop_size = hp.data.hop_length
all_frame = len_min
hop_frame = 10
out_chunk = 2500 # 25 S
out_index = 0
out_audio = []
has_audio = False
while out_index + out_chunk < all_frame:
has_audio = True
if out_index == 0: # start frame
cut_s = out_index
cut_s_48k = 0
else:
cut_s = out_index - hop_frame
cut_s_48k = hop_frame * hop_size
if out_index + out_chunk + hop_frame > all_frame: # end frame
cut_e = out_index + out_chunk
cut_e_48k = 0
else:
cut_e = out_index + out_chunk + hop_frame
cut_e_48k = -1 * hop_frame * hop_size
sub_ppg = ppg[cut_s:cut_e, :].unsqueeze(0).to(device)
sub_pit = pit[cut_s:cut_e].unsqueeze(0).to(device)
sub_len = torch.LongTensor([cut_e - cut_s]).to(device)
sub_har = source[:, :, cut_s *
hop_size:cut_e * hop_size].to(device)
sub_out = model.inference(sub_ppg, sub_pit, spk, sub_len, sub_har)
sub_out = sub_out[0, 0].data.cpu().detach().numpy()
sub_out = sub_out[cut_s_48k:cut_e_48k]
out_audio.extend(sub_out)
out_index = out_index + out_chunk
if out_index < all_frame:
if has_audio:
cut_s = out_index - hop_frame
cut_s_48k = hop_frame * hop_size
else:
cut_s = 0
cut_s_48k = 0
sub_ppg = ppg[cut_s:, :].unsqueeze(0).to(device)
sub_pit = pit[cut_s:].unsqueeze(0).to(device)
sub_len = torch.LongTensor([all_frame - cut_s]).to(device)
sub_har = source[:, :, cut_s * hop_size:].to(device)
sub_out = model.inference(sub_ppg, sub_pit, spk, sub_len, sub_har)
sub_out = sub_out[0, 0].data.cpu().detach().numpy()
sub_out = sub_out[cut_s_48k:]
out_audio.extend(sub_out)
out_audio = np.asarray(out_audio)
return out_audio
def svc_main(sid, input_audio):
if input_audio is None:
return "You need to upload an audio", None
sampling_rate, audio = input_audio
uuid_value = uuid.uuid4()
uuid_string = str(uuid_value)
input_audio_tmp_file = f'{uuid_string}.wav'
tmpfile_path = '/tmp'
#
# prediction = separator.separate(audio)
# vocals, accompaniment = prediction["vocals"], prediction["accompaniment"]
soundfile.write(input_audio_tmp_file, audio, sampling_rate, format="wav")
if not os.path.exists(tmpfile_path):
os.makedirs(tmpfile_path)
separator.separate_to_file(input_audio_tmp_file, tmpfile_path)
curr_tmp_path = os.path.join(tmpfile_path, os.path.splitext(input_audio_tmp_file)[0])
vocals_filepath = os.path.join(curr_tmp_path, 'vocals.wav')
accompaniment_filepath = os.path.join(curr_tmp_path, 'accompaniment.wav')
vocals, sampling_rate = soundfile.read(vocals_filepath)
if len(vocals.shape) > 1:
vocals = librosa.to_mono(vocals.transpose(1, 0))
if sampling_rate != 16000:
vocals = librosa.resample(vocals, orig_sr=sampling_rate, target_sr=16000)
if len(vocals) > 16000 * 100:
vocals = vocals[:16000 * 100]
wav_path = "temp.wav"
soundfile.write(wav_path, vocals, 16000, format="wav")
out_vocals = svc_change(wav_path, f"configs/singers/singer00{sid}.npy")
out_vocals_filepath = os.path.join(curr_tmp_path, 'out_vocals.wav')
soundfile.write(out_vocals_filepath, out_vocals, 48000, format="wav")
sound1 = AudioSegment.from_file(out_vocals_filepath)
sound2 = AudioSegment.from_file(accompaniment_filepath)
played_togther = sound1.overlay(sound2)
result_path = os.path.join(curr_tmp_path, 'out_song.wav')
played_togther.export(result_path, format="wav")
result, sampling_rate = soundfile.read(result_path)
return "Success", (sampling_rate, result)
def auto_search(name):
save_music_path = 'downloaded'
if not os.path.exists(save_music_path):
os.makedirs(save_music_path)
config = {'logfilepath': 'musicdl.log', save_music_path: 'downloaded', 'search_size_per_source': 5, 'proxies': {}}
save_path = os.path.join(save_music_path, name + '.mp3')
# youtube
task1 = threading.Thread(
target=get_youtube,
args=(name, save_path)
)
task1.start()
task2 = threading.Thread(
target=download_random,
args=(name, config, save_path)
)
task2.start()
task1.join()
task2.join()
if not os.path.exists(save_path):
return "Not Found", None
signal, sampling_rate = soundfile.read(save_path)
return "Found a music", (sampling_rate, signal)
app = gr.Blocks()
with app:
title = "Singer Voice Clone 0.1 Demo"
desc = """ small singer voice clone Demo App. <br />
Enter keywords auto search music to clone or upload music yourself <br />
It's just a simplified demo, you can use more advanced features optimize music quality <br />"""
tutorial_link = "https://docs.cworld.ai"
gr.HTML(
f"""
<div style="text-align: center; margin: 0 auto;">
<a href="https://cworld.ai">
<svg style="margin: 0 auto;" width="155" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 407 100">
<g id="SvgjsG2746"
transform="matrix(0.8454106280193237,0,0,0.8454106280193237,-4.2270531400966185,-4.2270531400966185)"
fill="#111">
<g xmlns="http://www.w3.org/2000/svg">
<g>
<g>
<path d="M50,11c21.5,0,39,17.5,39,39S71.5,89,50,89S11,71.5,11,50S28.5,11,50,11 M50,5C25.1,5,5,25.1,5,50s20.1,45,45,45 s45-20.1,45-45S74.9,5,50,5L50,5z"></path>
</g>
</g>
<path d="M55,75H45v-5c0-2.8,2.2-5,5-5h0c2.8,0,5,2.2,5,5V75z"></path>
<rect x="25" y="35" width="10" height="20"></rect>
<rect x="65" y="35" width="10" height="20"></rect>
</g>
</g>
<g id="SvgjsG2747"
transform="matrix(3.3650250410766605,0,0,3.3650250410766605,93.98098208712985,-3.546415304677616)"
fill="#111">
<path
d="M8.1 17.42 l1.42 1.28 c-0.94 1.04 -2.28 1.5 -3.78 1.5 c-2.84 0 -5.14 -2.18 -5.14 -5.12 s2.3 -5.14 5.14 -5.14 c1.5 0 2.84 0.46 3.78 1.5 l-1.42 1.28 c-0.58 -0.78 -1.42 -1.08 -2.36 -1.08 c-1.7 0 -3.08 1.42 -3.08 3.44 c0 2 1.38 3.44 3.08 3.44 c0.94 0 1.78 -0.3 2.36 -1.1 z M23.42 10.12 l2.06 0 l-3.76 9.88 l-1.26 0 l-2.46 -6.4 l-2.44 6.4 l-1.26 0 l-3.78 -9.88 l2.08 0 l2.34 6.9 l2.06 -6.08 l0.26 -0.82 l1.48 0 l0.28 0.82 l2.06 6.08 z M31.62 11.64 c-1.7 0 -3.08 1.42 -3.08 3.44 c0 2 1.38 3.44 3.08 3.44 s3.08 -1.44 3.08 -3.44 c0 -2.02 -1.38 -3.44 -3.08 -3.44 z M31.62 9.94 c2.84 0 5.14 2.2 5.14 5.14 s-2.3 5.12 -5.14 5.12 s-5.14 -2.18 -5.14 -5.12 s2.3 -5.14 5.14 -5.14 z M44.9 10.24 l-0.44 1.62 c-0.14 -0.08 -0.58 -0.22 -0.94 -0.22 c-1.7 0 -2.5 1.62 -2.5 3.62 l0 4.74 l-2.06 0 l0 -9.88 l2.06 0 l0 1.4 c0.24 -0.92 1.3 -1.58 2.48 -1.58 c0.54 0 1.12 0.14 1.4 0.3 z M48.379999999999995 4.619999999999999 l0 15.38 l-2.08 0 l0 -15.38 l2.08 0 z M50.98 15.08 c0 -2.94 2.1 -5.14 4.94 -5.14 c0.98 0 2.18 0.42 2.84 0.96 l0 -5.9 l2.08 0 l0 15 l-2.08 0 l0 -0.74 c-0.78 0.58 -1.86 0.94 -2.84 0.94 c-2.84 0 -4.94 -2.18 -4.94 -5.12 z M53.06 15.08 c0 2 1.38 3.44 3.06 3.44 c1.12 0 2.12 -0.52 2.64 -1.58 c0.28 -0.54 0.44 -1.18 0.44 -1.86 s-0.16 -1.32 -0.44 -1.88 c-0.52 -1.06 -1.52 -1.56 -2.64 -1.56 c-1.68 0 -3.06 1.42 -3.06 3.44 z M66.46 18.78 c0 0.8 -0.62 1.42 -1.42 1.42 c-0.78 0 -1.4 -0.62 -1.4 -1.42 c0 -0.76 0.62 -1.38 1.4 -1.38 c0.8 0 1.42 0.62 1.42 1.38 z M73.08 9.92 c2.84 0 3.98 1.72 3.98 3.18 l0 6.9 l-2.06 0 l0 -1.08 c-0.72 0.98 -2 1.26 -2.8 1.26 c-2.26 0 -3.74 -1.32 -3.74 -3.08 c0 -2.46 1.84 -3.34 3.74 -3.34 l2.8 0 l0 -0.66 c0 -0.62 -0.24 -1.48 -1.92 -1.48 c-0.94 0 -1.8 0.5 -2.36 1.28 l-1.42 -1.28 c0.94 -1.04 2.28 -1.7 3.78 -1.7 z M75 16.92 l0 -1.48 l-2.52 0 c-1.22 0 -2.08 0.62 -1.94 1.74 c0.12 0.94 0.88 1.32 1.94 1.32 c1.9 0 2.52 -0.9 2.52 -1.58 z M81.9 10.12 l0 9.88 l-2.06 0 l0 -9.88 l2.06 0 z M82 6.5 c0 0.64 -0.5 1.14 -1.14 1.14 c-0.62 0 -1.12 -0.5 -1.12 -1.14 c0 -0.62 0.5 -1.12 1.12 -1.12 c0.64 0 1.14 0.5 1.14 1.12 z"></path>
</g>
</svg>
</a>
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
{title}
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%; line-height: 23px;">
{desc}
There is the <a href="{tutorial_link}"> tutorial </a>
</p>
</div>
"""
)
with gr.Group():
with gr.Box():
with gr.Row():
with gr.Column():
sid = gr.Dropdown(label="Singer", choices=["22", "33", "47", "51"], value="47")
vc_input2 = gr.Textbox(label="Music Name")
vc_search = gr.Button("Auto Search", variant="primary")
with gr.Column():
vc_input3 = gr.Audio(label="Upload Music Yourself")
vc_submit = gr.Button("Convert", variant="primary")
with gr.Column():
vc_output1 = gr.Textbox(label="Run Status")
vc_output2 = gr.Audio(label="Result Audio")
vc_search.click(auto_search, [vc_input2], [vc_output1, vc_input3])
vc_submit.click(svc_main, [sid, vc_input3], [vc_output1, vc_output2])
app.launch()
|