File size: 8,700 Bytes
797142e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""make variations of input image"""

import argparse, os
import PIL
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange, repeat
from torchvision.utils import make_grid
from torch import autocast
from contextlib import nullcontext
from pytorch_lightning import seed_everything
from imwatermark import WatermarkEncoder


from scripts.txt2img import put_watermark
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler


def chunk(it, size):
    it = iter(it)
    return iter(lambda: tuple(islice(it, size)), ())


def load_model_from_config(config, ckpt, verbose=False):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu")
    if "global_step" in pl_sd:
        print(f"Global Step: {pl_sd['global_step']}")
    sd = pl_sd["state_dict"]
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model.cuda()
    model.eval()
    return model


def load_img(path):
    image = Image.open(path).convert("RGB")
    w, h = image.size
    print(f"loaded input image of size ({w}, {h}) from {path}")
    w, h = map(lambda x: x - x % 64, (w, h))  # resize to integer multiple of 64
    image = image.resize((w, h), resample=PIL.Image.LANCZOS)
    image = np.array(image).astype(np.float32) / 255.0
    image = image[None].transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return 2. * image - 1.


def main():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--prompt",
        type=str,
        nargs="?",
        default="a painting of a virus monster playing guitar",
        help="the prompt to render"
    )

    parser.add_argument(
        "--init-img",
        type=str,
        nargs="?",
        help="path to the input image"
    )

    parser.add_argument(
        "--outdir",
        type=str,
        nargs="?",
        help="dir to write results to",
        default="outputs/img2img-samples"
    )

    parser.add_argument(
        "--ddim_steps",
        type=int,
        default=50,
        help="number of ddim sampling steps",
    )

    parser.add_argument(
        "--fixed_code",
        action='store_true',
        help="if enabled, uses the same starting code across all samples ",
    )

    parser.add_argument(
        "--ddim_eta",
        type=float,
        default=0.0,
        help="ddim eta (eta=0.0 corresponds to deterministic sampling",
    )
    parser.add_argument(
        "--n_iter",
        type=int,
        default=1,
        help="sample this often",
    )

    parser.add_argument(
        "--C",
        type=int,
        default=4,
        help="latent channels",
    )
    parser.add_argument(
        "--f",
        type=int,
        default=8,
        help="downsampling factor, most often 8 or 16",
    )

    parser.add_argument(
        "--n_samples",
        type=int,
        default=2,
        help="how many samples to produce for each given prompt. A.k.a batch size",
    )

    parser.add_argument(
        "--n_rows",
        type=int,
        default=0,
        help="rows in the grid (default: n_samples)",
    )

    parser.add_argument(
        "--scale",
        type=float,
        default=9.0,
        help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
    )

    parser.add_argument(
        "--strength",
        type=float,
        default=0.8,
        help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image",
    )

    parser.add_argument(
        "--from-file",
        type=str,
        help="if specified, load prompts from this file",
    )
    parser.add_argument(
        "--config",
        type=str,
        default="configs/stable-diffusion/v2-inference.yaml",
        help="path to config which constructs model",
    )
    parser.add_argument(
        "--ckpt",
        type=str,
        help="path to checkpoint of model",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="the seed (for reproducible sampling)",
    )
    parser.add_argument(
        "--precision",
        type=str,
        help="evaluate at this precision",
        choices=["full", "autocast"],
        default="autocast"
    )

    opt = parser.parse_args()
    seed_everything(opt.seed)

    config = OmegaConf.load(f"{opt.config}")
    model = load_model_from_config(config, f"{opt.ckpt}")

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)

    sampler = DDIMSampler(model)

    os.makedirs(opt.outdir, exist_ok=True)
    outpath = opt.outdir

    print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
    wm = "SDV2"
    wm_encoder = WatermarkEncoder()
    wm_encoder.set_watermark('bytes', wm.encode('utf-8'))

    batch_size = opt.n_samples
    n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
    if not opt.from_file:
        prompt = opt.prompt
        assert prompt is not None
        data = [batch_size * [prompt]]

    else:
        print(f"reading prompts from {opt.from_file}")
        with open(opt.from_file, "r") as f:
            data = f.read().splitlines()
            data = list(chunk(data, batch_size))

    sample_path = os.path.join(outpath, "samples")
    os.makedirs(sample_path, exist_ok=True)
    base_count = len(os.listdir(sample_path))
    grid_count = len(os.listdir(outpath)) - 1

    assert os.path.isfile(opt.init_img)
    init_image = load_img(opt.init_img).to(device)
    init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
    init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image))  # move to latent space

    sampler.make_schedule(ddim_num_steps=opt.ddim_steps, ddim_eta=opt.ddim_eta, verbose=False)

    assert 0. <= opt.strength <= 1., 'can only work with strength in [0.0, 1.0]'
    t_enc = int(opt.strength * opt.ddim_steps)
    print(f"target t_enc is {t_enc} steps")

    precision_scope = autocast if opt.precision == "autocast" else nullcontext
    with torch.no_grad():
        with precision_scope("cuda"):
            with model.ema_scope():
                all_samples = list()
                for n in trange(opt.n_iter, desc="Sampling"):
                    for prompts in tqdm(data, desc="data"):
                        uc = None
                        if opt.scale != 1.0:
                            uc = model.get_learned_conditioning(batch_size * [""])
                        if isinstance(prompts, tuple):
                            prompts = list(prompts)
                        c = model.get_learned_conditioning(prompts)

                        # encode (scaled latent)
                        z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc] * batch_size).to(device))
                        # decode it
                        samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=opt.scale,
                                                 unconditional_conditioning=uc, )

                        x_samples = model.decode_first_stage(samples)
                        x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)

                        for x_sample in x_samples:
                            x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
                            img = Image.fromarray(x_sample.astype(np.uint8))
                            img = put_watermark(img, wm_encoder)
                            img.save(os.path.join(sample_path, f"{base_count:05}.png"))
                            base_count += 1
                        all_samples.append(x_samples)

                # additionally, save as grid
                grid = torch.stack(all_samples, 0)
                grid = rearrange(grid, 'n b c h w -> (n b) c h w')
                grid = make_grid(grid, nrow=n_rows)

                # to image
                grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
                grid = Image.fromarray(grid.astype(np.uint8))
                grid = put_watermark(grid, wm_encoder)
                grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
                grid_count += 1

    print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.")


if __name__ == "__main__":
    main()