File size: 21,363 Bytes
49226f5
 
797142e
 
134c419
91920f4
ad223ef
a5fe30f
49226f5
a5fe30f
797142e
49226f5
797142e
2dfa0cd
 
a5fe30f
 
 
 
 
 
 
 
2a589fd
12e6773
134c419
d0740f4
 
49226f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5fe30f
 
 
 
 
 
 
 
49226f5
 
 
134c419
a5fe30f
 
 
e8c43c7
 
a5fe30f
 
 
 
 
 
 
91920f4
ad223ef
 
 
 
 
 
 
 
 
76d3903
ad223ef
 
 
 
 
 
 
 
 
76d3903
ad223ef
 
49226f5
12e6773
49226f5
 
 
 
 
a5fe30f
 
 
12e6773
a5fe30f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49226f5
 
 
 
 
 
 
 
 
a5fe30f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49226f5
a5fe30f
 
 
 
2a589fd
a5fe30f
134c419
76d3903
134c419
 
797142e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ada03b
797142e
 
 
3ec570b
a5fe30f
3ec570b
797142e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b028a73
 
797142e
 
 
 
 
 
 
 
 
 
 
 
 
 
51b6984
797142e
 
 
 
 
 
51b6984
 
5181cd5
49226f5
 
797142e
 
 
 
49226f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eb6ffc
49226f5
 
 
 
797142e
 
3842624
 
 
 
 
 
ad223ef
3842624
797142e
3842624
9dccf54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea46a22
9dccf54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797142e
 
 
 
3ec570b
51b6984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49226f5
37db064
49226f5
37db064
49226f5
797142e
49226f5
 
 
a5fe30f
49226f5
 
 
 
9dccf54
49226f5
797142e
49226f5
 
 
 
 
76d3903
49226f5
b028a73
852d36a
49226f5
 
 
 
 
12e6773
00c92ee
49226f5
00c92ee
49226f5
76d3903
 
49226f5
 
 
 
 
 
134c419
49226f5
 
76d3903
5ada03b
49226f5
 
 
76d3903
49226f5
76d3903
49226f5
76d3903
797142e
3842624
49226f5
 
8369427
 
49226f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import random

import gradio as gr
from datasets import load_dataset
from PIL import Image

from set import ExpiringMap
# from model import get_sd_small, get_sd_tiny, get_sd_every
from trans_google import google_translator
import replicate

from i18n import i18nTranslator

word_list_dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
word_list = word_list_dataset["train"]['Prompt']
#
# from diffusers import EulerDiscreteScheduler, DDIMScheduler, KDPM2AncestralDiscreteScheduler, \
#     UniPCMultistepScheduler, DPMSolverSinglestepScheduler, DEISMultistepScheduler, PNDMScheduler, \
#     DPMSolverMultistepScheduler, HeunDiscreteScheduler, EulerAncestralDiscreteScheduler, DDPMScheduler, \
#     LMSDiscreteScheduler, KDPM2DiscreteScheduler
# import torch
# import base64
# from io import BytesIO

is_gpu_busy = False

# translator = i18nTranslator()
# translator.init(path='locales')
samplers = [
    "EulerDiscrete",
    "EulerAncestralDiscrete",
    "UniPCMultistep",
    "DPMSolverSinglestep",
    "DPMSolverMultistep",
    "KDPM2Discrete",
    "KDPM2AncestralDiscrete",
    "DEISMultistep",
    "HeunDiscrete",
    "PNDM",
    "DDPM",
    "DDIM",
    "LMSDiscrete",
]
re_sampler = [
    "DDIM",
    "K_EULER",
    "DPMSolverMultistep",
    "K_EULER_ANCESTRAL",
    "PNDM",
    "KLMS"
]

rand = random.Random()
translator = google_translator()

# tiny_pipe = get_sd_tiny()
# small_pipe = get_sd_small()
# every_pipe = get_sd_every()


# def get_pipe(width: int, height: int):
#     if width == 512 and height == 512:
#         return tiny_pipe
#     elif width == 256 and height == 256:
#         return small_pipe
#     else:
#         return every_pipe

time_client_map = ExpiringMap()
count_client_map = ExpiringMap()


def infer(prompt: str, negative: str, width: int, height: int, sampler: str,
          steps: int, seed: int, scale, request: gr.Request):
    client_ip = request.client.host
    if client_ip != '127.0.0.1' and client_ip != 'localhost' and client_ip != '0.0.0.0':
        if time_client_map.get(client_ip):
            return None, "Too many requests, please try again later."
        else:
            time_client_map.put(client_ip, 1, 10)  # 添加一个过期时间为 10 秒的项

    count = count_client_map.get(client_ip)
    if count is None:
        count = 0

    count += 1
    if count > 5:
        return None, "Too many requests, please try again later."
    else:
        count_client_map.put(client_ip, count, 24 * 60 * 60)  # 添加一个过期时间为 24 小时的项

    global is_gpu_busy

    if seed == 0:
        seed = rand.randint(0, 10000)
    else:
        seed = int(seed)
    #
    # pipeline = get_pipe(width, height)
    #
    images = []
    # if torch.cuda.is_available():
    #     generator = torch.Generator(device="cuda").manual_seed(seed)
    # else:
    #     generator = None
    # if sampler == "EulerDiscrete":
    #     pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
    # elif sampler == "EulerAncestralDiscrete":
    #     pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
    # elif sampler == "KDPM2Discrete":
    #     pipeline.scheduler = KDPM2DiscreteScheduler.from_config(pipeline.scheduler.config)
    # elif sampler == "KDPM2AncestralDiscrete":
    #     pipeline.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
    # elif sampler == "UniPCMultistep":
    #     pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
    # elif sampler == "DPMSolverSinglestep":
    #     pipeline.scheduler = DPMSolverSinglestepScheduler.from_config(pipeline.scheduler.config)
    # elif sampler == "DPMSolverMultistep":
    #     pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
    # elif sampler == "HeunDiscrete":
    #     pipeline.scheduler = HeunDiscreteScheduler.from_config(pipeline.scheduler.config)
    # elif sampler == "DEISMultistep":
    #     pipeline.scheduler = DEISMultistepScheduler.from_config(pipeline.scheduler.config)
    # elif sampler == "PNDM":
    #     pipeline.scheduler = PNDMScheduler.from_config(pipeline.scheduler.config)
    # elif sampler == "DDPM":
    #     pipeline.scheduler = DDPMScheduler.from_config(pipeline.scheduler.config)
    # elif sampler == "DDIM":
    #     pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
    # elif sampler == "LMSDiscrete":
    #     pipeline.scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)

    try:
        translate_prompt = translator.translate(prompt, lang_tgt='en')
        translate_negative = translator.translate(negative, lang_tgt='en')
    except Exception as ex:
        print(ex)
        translate_prompt = prompt
        translate_negative = negative

    output = replicate.run(
        "stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf",
        input={
            "prompt": translate_prompt,
            "negative_prompt": translate_negative,
            "guidance_scale": scale,
            "num_inference_steps": steps,
            "seed": seed,
            "scheduler": sampler,
        }
    )

    # image = pipeline(prompt=translate_prompt,
    #                  negative_prompt=translate_negative,
    #                  guidance_scale=scale,
    #                  num_inference_steps=steps,
    #                  generator=generator,
    #                  height=height,
    #                  width=width).images[0]

    # buffered = BytesIO()
    # image.save(buffered, format="JPEG")
    # img_str = base64.b64encode(buffered.getvalue())
    # img_base64 = bytes("data:image/jpeg;base64,", encoding='utf-8') + img_str

    images.append(output[0])

    return images, ""


css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 1130px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #prompt-column {
            min-height: 500px
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
            margin-top: 10px;
            margin-left: auto;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
        }
        #share-btn * {
            all: unset;
        }
        #share-btn-container div:nth-child(-n+2){
            width: auto !important;
            min-height: 0px !important;
        }
        #share-btn-container .wrap {
            display: none !important;
        }
        
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
        #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
        #component-16{border-top-width: 1px!important;margin-top: 1em}
        .image_duplication{position: absolute; width: 100px; left: 50px}
        .generate-container {display: flex; justify-content: flex-end;} 
        #generate-btn {background: linear-gradient(to bottom right, #ffedd5, #fdba74)}
"""

block = gr.Blocks(css=css)

# text, negative, width, height, sampler, steps, seed, guidance_scale
# examples = [
#     [
#         'A high tech solarpunk utopia in the Amazon rainforest',
#         'low quality',
#         512,
#         512,
#         'ddim',
#         30,
#         0,
#         9
#     ],
#     [
#         'A pikachu fine dining with a view to the Eiffel Tower',
#         'low quality',
#         512,
#         512,
#         'ddim',
#         30,
#         0,
#         9
#     ],
#     [
#         'A mecha robot in a favela in expressionist style',
#         'low quality, 3d, photorealistic',
#         512,
#         512,
#         'ddim',
#         30,
#         0,
#         9
#     ],
#     [
#         'an insect robot preparing a delicious meal',
#         'low quality, illustration',
#         512,
#         512,
#         'ddim',
#         30,
#         0,
#         9
#     ],
#     [
#         "A small cabin on top of a snowy mountain in the style of Disney, artstation",
#         'low quality, ugly',
#         512,
#         512,
#         'ddim',
#         30,
#         0,
#         9
#     ],
# ]

examples = list(map(lambda x: [
    x,
    'low quality',
    512,
    512,
    'DPMSolverMultistep',
    30,
    0,
    9
], word_list))[:500]

with block:
    title = "Stable Diffusion 2.1 Demo"
    desc = """ small stable diffusion Demo App. <br />
                   Click <strong>Generate image</strong> Button to generate image. <br />
                   Also Change params to have a try <br />
                   more size may cost more time. <br />
                   It's just a simplified demo, you can use more advanced features optimize image quality <br />"""
    tutorial_link = "https://docs.cworld.ai/docs/cworld-ai/quick-start-stable-diffusion"

    gr.HTML(
        f"""
                        <div style="text-align: center; margin: 0 auto;">
                          <a href="https://cworld.ai"> 
                            <svg style="margin: 0 auto;" width="155" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 407 100">
                                <g id="SvgjsG2746"
                                    transform="matrix(0.8454106280193237,0,0,0.8454106280193237,-4.2270531400966185,-4.2270531400966185)"
                                    fill="#111">
                                <g xmlns="http://www.w3.org/2000/svg">
                                    <g>
                                        <g>
                                            <path d="M50,11c21.5,0,39,17.5,39,39S71.5,89,50,89S11,71.5,11,50S28.5,11,50,11 M50,5C25.1,5,5,25.1,5,50s20.1,45,45,45     s45-20.1,45-45S74.9,5,50,5L50,5z"></path>
                                        </g>
                                    </g>
                                    <path d="M55,75H45v-5c0-2.8,2.2-5,5-5h0c2.8,0,5,2.2,5,5V75z"></path>
                                    <rect x="25" y="35" width="10" height="20"></rect>
                                    <rect x="65" y="35" width="10" height="20"></rect>
                                </g>
                                </g>
                                <g id="SvgjsG2747"
                                   transform="matrix(3.3650250410766605,0,0,3.3650250410766605,93.98098208712985,-3.546415304677616)"
                                   fill="#111">
                                <path
                                        d="M8.1 17.42 l1.42 1.28 c-0.94 1.04 -2.28 1.5 -3.78 1.5 c-2.84 0 -5.14 -2.18 -5.14 -5.12 s2.3 -5.14 5.14 -5.14 c1.5 0 2.84 0.46 3.78 1.5 l-1.42 1.28 c-0.58 -0.78 -1.42 -1.08 -2.36 -1.08 c-1.7 0 -3.08 1.42 -3.08 3.44 c0 2 1.38 3.44 3.08 3.44 c0.94 0 1.78 -0.3 2.36 -1.1 z M23.42 10.12 l2.06 0 l-3.76 9.88 l-1.26 0 l-2.46 -6.4 l-2.44 6.4 l-1.26 0 l-3.78 -9.88 l2.08 0 l2.34 6.9 l2.06 -6.08 l0.26 -0.82 l1.48 0 l0.28 0.82 l2.06 6.08 z M31.62 11.64 c-1.7 0 -3.08 1.42 -3.08 3.44 c0 2 1.38 3.44 3.08 3.44 s3.08 -1.44 3.08 -3.44 c0 -2.02 -1.38 -3.44 -3.08 -3.44 z M31.62 9.94 c2.84 0 5.14 2.2 5.14 5.14 s-2.3 5.12 -5.14 5.12 s-5.14 -2.18 -5.14 -5.12 s2.3 -5.14 5.14 -5.14 z M44.9 10.24 l-0.44 1.62 c-0.14 -0.08 -0.58 -0.22 -0.94 -0.22 c-1.7 0 -2.5 1.62 -2.5 3.62 l0 4.74 l-2.06 0 l0 -9.88 l2.06 0 l0 1.4 c0.24 -0.92 1.3 -1.58 2.48 -1.58 c0.54 0 1.12 0.14 1.4 0.3 z M48.379999999999995 4.619999999999999 l0 15.38 l-2.08 0 l0 -15.38 l2.08 0 z M50.98 15.08 c0 -2.94 2.1 -5.14 4.94 -5.14 c0.98 0 2.18 0.42 2.84 0.96 l0 -5.9 l2.08 0 l0 15 l-2.08 0 l0 -0.74 c-0.78 0.58 -1.86 0.94 -2.84 0.94 c-2.84 0 -4.94 -2.18 -4.94 -5.12 z M53.06 15.08 c0 2 1.38 3.44 3.06 3.44 c1.12 0 2.12 -0.52 2.64 -1.58 c0.28 -0.54 0.44 -1.18 0.44 -1.86 s-0.16 -1.32 -0.44 -1.88 c-0.52 -1.06 -1.52 -1.56 -2.64 -1.56 c-1.68 0 -3.06 1.42 -3.06 3.44 z M66.46 18.78 c0 0.8 -0.62 1.42 -1.42 1.42 c-0.78 0 -1.4 -0.62 -1.4 -1.42 c0 -0.76 0.62 -1.38 1.4 -1.38 c0.8 0 1.42 0.62 1.42 1.38 z M73.08 9.92 c2.84 0 3.98 1.72 3.98 3.18 l0 6.9 l-2.06 0 l0 -1.08 c-0.72 0.98 -2 1.26 -2.8 1.26 c-2.26 0 -3.74 -1.32 -3.74 -3.08 c0 -2.46 1.84 -3.34 3.74 -3.34 l2.8 0 l0 -0.66 c0 -0.62 -0.24 -1.48 -1.92 -1.48 c-0.94 0 -1.8 0.5 -2.36 1.28 l-1.42 -1.28 c0.94 -1.04 2.28 -1.7 3.78 -1.7 z M75 16.92 l0 -1.48 l-2.52 0 c-1.22 0 -2.08 0.62 -1.94 1.74 c0.12 0.94 0.88 1.32 1.94 1.32 c1.9 0 2.52 -0.9 2.52 -1.58 z M81.9 10.12 l0 9.88 l-2.06 0 l0 -9.88 l2.06 0 z M82 6.5 c0 0.64 -0.5 1.14 -1.14 1.14 c-0.62 0 -1.12 -0.5 -1.12 -1.14 c0 -0.62 0.5 -1.12 1.12 -1.12 c0.64 0 1.14 0.5 1.14 1.12 z"></path>
                                </g>
                            </svg>
                          </a>
                          <div
                            style="
                              display: inline-flex;
                              align-items: center;
                              gap: 0.8rem;
                              font-size: 1.75rem;
                            "
                          >
                            <h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
                              {title}
                            </h1>
                          </div>
                          <p style="margin-bottom: 10px; font-size: 94%; line-height: 23px;">
                            {desc}
                            There is the <a href="{tutorial_link}"> tutorial </a>
                          </p>
                        </div>
                    """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                with gr.Column(elem_id="prompt-column"):
                    text = gr.Textbox(
                        label="Enter your prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        elem_id="prompt-text-input",
                    ).style(
                        border=(True, False, True, True),
                        rounded=(True, False, False, True),
                        container=False,
                    )
                    negative = gr.Textbox(
                        label="Enter your negative prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter a negative prompt",
                        elem_id="negative-prompt-text-input",
                    ).style(
                        border=(True, False, True, True),
                        rounded=(True, False, False, True),
                        container=False,
                    )
                    with gr.Row(elem_id="txt2img_size", scale=4):
                        width = gr.Slider(minimum=64, maximum=1024, step=8, label="Width", value=512,
                                          elem_id="txt2img_width")
                        height = gr.Slider(minimum=64, maximum=1024, step=8, label="Height", value=512,
                                           elem_id="txt2img_height")

                    with gr.Row(elem_id="txt2img_sampler", scale=4):
                        seed = gr.Number(value=0, label="Seed", elem_id="txt2img_seed")
                        sampler = gr.Dropdown(
                            re_sampler, value="DPMSolverMultistep",
                            multiselect=False,
                            label="Sampler",
                            info="sampler select"
                        )
                        steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id=f"steps", label="Sampling steps",
                                          value=20)

                    with gr.Accordion("Advanced settings", open=False):
                        #    gr.Markdown("Advanced settings are temporarily unavailable")
                        #    samples = gr.Slider(label="Images", minimum=1, maximum=4, value=4, step=1)
                        #    steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1)
                        guidance_scale = gr.Slider(
                            label="Guidance Scale", minimum=0, maximum=40, value=9, step=0.1
                        )

                    with gr.Row(elem_id="generate-container", elem_classes="generate-container").style(height="100"):
                        btn = gr.Button("Generate image", elem_id="generate-btn", elem_classes="generate-btn").style(
                            margin=False,
                            rounded=(False, True, True, False),
                            full_width=False,
                        )

                gallery = gr.Gallery(
                    label="Generated images", show_label=False, elem_id="gallery"
                ).style()

                result = gr.Textbox(label="Run Status")

        # with gr.Group(elem_id="container-advanced-btns"):
        #     # advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
        #     with gr.Group(elem_id="share-btn-container"):
        #         community_icon = gr.HTML(community_icon_html)
        #         loading_icon = gr.HTML(loading_icon_html)
        #         share_button = gr.Button("Share to community", elem_id="share-btn")

        ex = gr.Examples(examples=examples, fn=infer,
                         inputs=[text, negative, width, height, sampler, steps, seed, guidance_scale],
                         outputs=[gallery, result],
                         examples_per_page=5,
                         cache_examples=False)
        ex.dataset.headers = [""]
        negative.submit(infer, inputs=[text, negative, width, height, sampler, steps, seed, guidance_scale],
                        outputs=[gallery, result], postprocess=False)
        text.submit(infer, inputs=[text, negative, width, height, sampler, steps, seed, guidance_scale],
                    outputs=[gallery, result], postprocess=False)
        btn.click(infer, inputs=[text, negative, width, height, sampler, steps, seed, guidance_scale],
                  outputs=[gallery, result], postprocess=False)

block.queue(concurrency_count=5,
            max_size=100).launch(
    max_threads=150,
    # server_port=6006,
    # share=True,
)