File size: 17,559 Bytes
49226f5
 
797142e
 
134c419
49226f5
797142e
49226f5
797142e
2dfa0cd
 
5181cd5
49226f5
 
 
 
2a589fd
49226f5
 
2a589fd
49226f5
2a589fd
 
 
134c419
 
 
49226f5
 
134c419
2a589fd
49226f5
 
12e6773
134c419
d0740f4
 
49226f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134c419
49226f5
 
12e6773
49226f5
 
 
 
 
134c419
12e6773
49226f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a589fd
49226f5
2a589fd
49226f5
 
 
 
 
 
 
2a589fd
49226f5
134c419
12e6773
134c419
 
797142e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ada03b
797142e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b028a73
 
797142e
 
 
 
 
 
 
 
 
 
 
 
 
 
51b6984
797142e
 
 
 
 
 
51b6984
 
5181cd5
49226f5
 
797142e
 
 
 
49226f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797142e
 
 
 
5181cd5
797142e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acc40be
51b6984
797142e
 
5181cd5
5ada03b
 
49226f5
797142e
 
 
 
 
 
 
51b6984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49226f5
 
 
 
 
797142e
49226f5
 
 
 
 
 
 
 
 
 
797142e
49226f5
 
 
 
 
 
 
b028a73
49226f5
 
 
 
 
 
12e6773
49226f5
 
 
 
 
 
 
 
 
 
134c419
49226f5
 
 
5ada03b
49226f5
 
 
 
 
 
 
 
797142e
49226f5
 
 
7681a30
 
49226f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import random

import gradio as gr
from datasets import load_dataset
from PIL import Image
from trans_google import google_translator

from i18n import i18nTranslator

word_list_dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
word_list = word_list_dataset["train"]['Prompt']

from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler, DDIMScheduler, KDPM2AncestralDiscreteScheduler, \
    UniPCMultistepScheduler, DPMSolverSinglestepScheduler, DEISMultistepScheduler, PNDMScheduler, \
    DPMSolverMultistepScheduler, HeunDiscreteScheduler, EulerAncestralDiscreteScheduler, DDPMScheduler, \
    LMSDiscreteScheduler, KDPM2DiscreteScheduler
import torch
import base64
from io import BytesIO

#
model_id = "stabilityai/stable-diffusion-2-1-base"

scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(
    model_id,
    scheduler=scheduler,
    # safety_checker=None,
    revision="fp16",
    torch_dtype=torch.float16)

if torch.cuda.is_available():
    pipe = pipe.to('cuda')
is_gpu_busy = False

# translator = i18nTranslator()
# translator.init(path='locales')
samplers = [
    "EulerDiscrete",
    "EulerAncestralDiscrete",
    "UniPCMultistep",
    "DPMSolverSinglestep",
    "DPMSolverMultistep",
    "KDPM2Discrete",
    "KDPM2AncestralDiscrete",
    "DEISMultistep",
    "HeunDiscrete",
    "PNDM",
    "DDPM",
    "DDIM",
    "LMSDiscrete",
]

rand = random.Random()
translator = google_translator()


def infer(prompt: str, negative: str, width: int, height: int, sampler: str, steps: int, seed: int, scale):
    global is_gpu_busy

    if seed == 0:
        seed = rand.randint(0, 10000)
    else:
        seed = int(seed)

    images = []
    device = "cpu"
    if torch.cuda.is_available():
        device = "cuda"
    generator = torch.Generator(device=device).manual_seed(seed)
    if sampler == "EulerDiscrete":
        pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler == "EulerAncestralDiscrete":
        pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler == "KDPM2Discrete":
        pipe.scheduler = KDPM2DiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler == "KDPM2AncestralDiscrete":
        pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler == "UniPCMultistep":
        pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
    elif sampler == "DPMSolverSinglestep":
        pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config)
    elif sampler == "DPMSolverMultistep":
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
    elif sampler == "HeunDiscrete":
        pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler == "DEISMultistep":
        pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config)
    elif sampler == "PNDM":
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
    elif sampler == "DDPM":
        pipe.scheduler = DDPMScheduler.from_config(pipe.scheduler.config)
    elif sampler == "DDIM":
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
    elif sampler == "LMSDiscrete":
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)

    try:
        translate_prompt = translator.translate(prompt, lang_tgt='en')
        translate_negative = translator.translate(negative, lang_tgt='en')
    except Exception as ex:
        print(ex)
        translate_prompt = prompt
        translate_negative = negative

    image = pipe(prompt=translate_prompt,
                 negative_prompt=translate_negative,
                 guidance_scale=scale,
                 num_inference_steps=steps,
                 generator=generator,
                 height=height,
                 width=width).images[0]

    buffered = BytesIO()
    image.save(buffered, format="JPEG")
    img_str = base64.b64encode(buffered.getvalue())
    img_base64 = bytes("data:image/jpeg;base64,", encoding='utf-8') + img_str

    images.append(img_base64)

    return images


css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 1130px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
            margin-top: 10px;
            margin-left: auto;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
        }
        #share-btn * {
            all: unset;
        }
        #share-btn-container div:nth-child(-n+2){
            width: auto !important;
            min-height: 0px !important;
        }
        #share-btn-container .wrap {
            display: none !important;
        }
        
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
        #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
        #component-16{border-top-width: 1px!important;margin-top: 1em}
        .image_duplication{position: absolute; width: 100px; left: 50px}
        .generate-container {display: flex; justify-content: flex-end;} 
        #generate-btn {background: linear-gradient(to bottom right, #ffedd5, #fdba74)}
"""

block = gr.Blocks(css=css)

# text, negative, width, height, sampler, steps, seed, guidance_scale
# examples = [
#     [
#         'A high tech solarpunk utopia in the Amazon rainforest',
#         'low quality',
#         512,
#         512,
#         'ddim',
#         30,
#         0,
#         9
#     ],
#     [
#         'A pikachu fine dining with a view to the Eiffel Tower',
#         'low quality',
#         512,
#         512,
#         'ddim',
#         30,
#         0,
#         9
#     ],
#     [
#         'A mecha robot in a favela in expressionist style',
#         'low quality, 3d, photorealistic',
#         512,
#         512,
#         'ddim',
#         30,
#         0,
#         9
#     ],
#     [
#         'an insect robot preparing a delicious meal',
#         'low quality, illustration',
#         512,
#         512,
#         'ddim',
#         30,
#         0,
#         9
#     ],
#     [
#         "A small cabin on top of a snowy mountain in the style of Disney, artstation",
#         'low quality, ugly',
#         512,
#         512,
#         'ddim',
#         30,
#         0,
#         9
#     ],
# ]

examples = list(map(lambda x: [
    x,
    'low quality',
    512,
    512,
    'ddim',
    30,
    0,
    9
], word_list))[:500]

with block:
    gr.HTML(
        """
            <div style="text-align: center; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >
                <svg
                  width="0.65em"
                  height="0.65em"
                  viewBox="0 0 115 115"
                  fill="none"
                  xmlns="http://www.w3.org/2000/svg"
                >
                  <rect width="23" height="23" fill="white"></rect>
                  <rect y="69" width="23" height="23" fill="white"></rect>
                  <rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="46" width="23" height="23" fill="white"></rect>
                  <rect x="46" y="69" width="23" height="23" fill="white"></rect>
                  <rect x="69" width="23" height="23" fill="black"></rect>
                  <rect x="69" y="69" width="23" height="23" fill="black"></rect>
                  <rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
                  <rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="115" y="46" width="23" height="23" fill="white"></rect>
                  <rect x="115" y="115" width="23" height="23" fill="white"></rect>
                  <rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
                  <rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="92" y="69" width="23" height="23" fill="white"></rect>
                  <rect x="69" y="46" width="23" height="23" fill="white"></rect>
                  <rect x="69" y="115" width="23" height="23" fill="white"></rect>
                  <rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
                  <rect x="46" y="46" width="23" height="23" fill="black"></rect>
                  <rect x="46" y="115" width="23" height="23" fill="black"></rect>
                  <rect x="46" y="69" width="23" height="23" fill="black"></rect>
                  <rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
                  <rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="23" y="69" width="23" height="23" fill="black"></rect>
                </svg>
                <h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
                  Stable Diffusion 2.1 Demo
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%; line-height: 23px;">
                Stable Diffusion 2.1 Demo App. <br />
                Click "Generate image" Button to generate image. <br />
                Also Change params to have a try
              </p>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                with gr.Column():
                    text = gr.Textbox(
                        label="Enter your prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        elem_id="prompt-text-input",
                    ).style(
                        border=(True, False, True, True),
                        rounded=(True, False, False, True),
                        container=False,
                    )
                    negative = gr.Textbox(
                        label="Enter your negative prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter a negative prompt",
                        elem_id="negative-prompt-text-input",
                    ).style(
                        border=(True, False, True, True),
                        rounded=(True, False, False, True),
                        container=False,
                    )
                    with gr.Row(elem_id="txt2img_size", scale=4):
                        width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512,
                                          elem_id="txt2img_width")
                        height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512,
                                           elem_id="txt2img_height")

                    with gr.Row(elem_id="txt2img_sampler", scale=4):
                        seed = gr.Number(value=0, label="Seed", elem_id="txt2img_seed")
                        sampler = gr.Dropdown(
                            samplers, value="",
                            multiselect=False,
                            label="Sampler",
                            info="sampler select"
                        )
                        steps = gr.Slider(minimum=1, maximum=80, step=1, elem_id=f"steps", label="Sampling steps",
                                          value=20)

                    with gr.Accordion("Advanced settings", open=False):
                        #    gr.Markdown("Advanced settings are temporarily unavailable")
                        #    samples = gr.Slider(label="Images", minimum=1, maximum=4, value=4, step=1)
                        #    steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1)
                        guidance_scale = gr.Slider(
                            label="Guidance Scale", minimum=0, maximum=50, value=9, step=0.1
                        )

                    with gr.Row(elem_id="generate-container", elem_classes="generate-container"):
                        btn = gr.Button("Generate image", elem_id="generate-btn", elem_classes="generate-btn").style(
                            margin=False,
                            rounded=(False, True, True, False),
                            full_width=False,
                        )

                gallery = gr.Gallery(
                    label="Generated images", show_label=False, elem_id="gallery"
                ).style(grid=[2], height="auto")

        # with gr.Group(elem_id="container-advanced-btns"):
        #     # advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
        #     with gr.Group(elem_id="share-btn-container"):
        #         community_icon = gr.HTML(community_icon_html)
        #         loading_icon = gr.HTML(loading_icon_html)
        #         share_button = gr.Button("Share to community", elem_id="share-btn")

        ex = gr.Examples(examples=examples, fn=infer,
                         inputs=[text, negative, width, height, sampler, steps, seed, guidance_scale],
                         outputs=[gallery],
                         examples_per_page=5,
                         cache_examples=False)
        ex.dataset.headers = [""]
        negative.submit(infer, inputs=[text, negative, width, height, sampler, steps, seed, guidance_scale],
                        outputs=[gallery], postprocess=False)
        text.submit(infer, inputs=[text, negative, width, height, sampler, steps, seed, guidance_scale],
                    outputs=[gallery], postprocess=False)
        btn.click(infer, inputs=[text, negative, width, height, sampler, steps, seed, guidance_scale],
                  outputs=[gallery], postprocess=False)

block.queue(concurrency_count=80,
            max_size=100).launch(
    max_threads=150,
    # server_port=6006,
    # share=True,
)