File size: 25,175 Bytes
1f4e6d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b863621
1f4e6d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65c70c9
1f4e6d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import gc
import hashlib
import io
import json
import logging
import os
import pickle
import time
from pathlib import Path

import librosa
import numpy as np

# import onnxruntime
import soundfile
import torch
import torchaudio

import cluster
import utils
from diffusion.unit2mel import load_model_vocoder
from inference import slicer
from models import SynthesizerTrn

logging.getLogger('matplotlib').setLevel(logging.WARNING)


def read_temp(file_name):
    if not os.path.exists(file_name):
        with open(file_name, "w") as f:
            f.write(json.dumps({"info": "temp_dict"}))
        return {}
    else:
        try:
            with open(file_name, "r") as f:
                data = f.read()
            data_dict = json.loads(data)
            if os.path.getsize(file_name) > 50 * 1024 * 1024:
                f_name = file_name.replace("\\", "/").split("/")[-1]
                print(f"clean {f_name}")
                for wav_hash in list(data_dict.keys()):
                    if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
                        del data_dict[wav_hash]
        except Exception as e:
            print(e)
            print(f"{file_name} error,auto rebuild file")
            data_dict = {"info": "temp_dict"}
        return data_dict


def write_temp(file_name, data):
    with open(file_name, "w") as f:
        f.write(json.dumps(data))


def timeit(func):
    def run(*args, **kwargs):
        t = time.time()
        res = func(*args, **kwargs)
        print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
        return res

    return run


def format_wav(audio_path):
    if Path(audio_path).suffix == '.wav':
        return
    raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
    soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)


def get_end_file(dir_path, end):
    file_lists = []
    for root, dirs, files in os.walk(dir_path):
        files = [f for f in files if f[0] != '.']
        dirs[:] = [d for d in dirs if d[0] != '.']
        for f_file in files:
            if f_file.endswith(end):
                file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
    return file_lists


def get_md5(content):
    return hashlib.new("md5", content).hexdigest()

def fill_a_to_b(a, b):
    if len(a) < len(b):
        for _ in range(0, len(b) - len(a)):
            a.append(a[0])

def mkdir(paths: list):
    for path in paths:
        if not os.path.exists(path):
            os.mkdir(path)

def pad_array(arr, target_length):
    current_length = arr.shape[0]
    if current_length >= target_length:
        return arr
    else:
        pad_width = target_length - current_length
        pad_left = pad_width // 2
        pad_right = pad_width - pad_left
        padded_arr = np.pad(arr, (pad_left, pad_right), 'constant', constant_values=(0, 0))
        return padded_arr
    
def split_list_by_n(list_collection, n, pre=0):
    for i in range(0, len(list_collection), n):
        yield list_collection[i-pre if i-pre>=0 else i: i + n]


class F0FilterException(Exception):
    pass

class Svc(object):
    def __init__(self, net_g_path, config_path,
                 device=None,
                 cluster_model_path="logs/44k/kmeans_10000.pt",
                 nsf_hifigan_enhance = False,
                 diffusion_model_path="logs/44k/diffusion/model_0.pt",
                 diffusion_config_path="configs/diffusion.yaml",
                 shallow_diffusion = False,
                 only_diffusion = False,
                 spk_mix_enable = False,
                 feature_retrieval = False
                 ):
        self.net_g_path = net_g_path
        self.only_diffusion = only_diffusion
        self.shallow_diffusion = shallow_diffusion
        self.feature_retrieval = feature_retrieval
        if device is None:
            self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        else:
            self.dev = torch.device(device)
        self.net_g_ms = None
        if not self.only_diffusion:
            self.hps_ms = utils.get_hparams_from_file(config_path,True)
            self.target_sample = self.hps_ms.data.sampling_rate
            self.hop_size = self.hps_ms.data.hop_length
            self.spk2id = self.hps_ms.spk
            self.unit_interpolate_mode = self.hps_ms.data.unit_interpolate_mode if self.hps_ms.data.unit_interpolate_mode is not None else 'left'
            self.vol_embedding = self.hps_ms.model.vol_embedding if self.hps_ms.model.vol_embedding is not None else False
            self.speech_encoder = self.hps_ms.model.speech_encoder if self.hps_ms.model.speech_encoder is not None else 'vec768l12'
 
        self.nsf_hifigan_enhance = nsf_hifigan_enhance
        if self.shallow_diffusion or self.only_diffusion:
            if os.path.exists(diffusion_model_path) and os.path.exists(diffusion_model_path):
                self.diffusion_model,self.vocoder,self.diffusion_args = load_model_vocoder(diffusion_model_path,self.dev,config_path=diffusion_config_path)
                if self.only_diffusion:
                    self.target_sample = self.diffusion_args.data.sampling_rate
                    self.hop_size = self.diffusion_args.data.block_size
                    self.spk2id = self.diffusion_args.spk
                    self.dtype = torch.float32
                    self.speech_encoder = self.diffusion_args.data.encoder
                    self.unit_interpolate_mode = self.diffusion_args.data.unit_interpolate_mode if self.diffusion_args.data.unit_interpolate_mode is not None else 'left'
                if spk_mix_enable:
                    self.diffusion_model.init_spkmix(len(self.spk2id))
            else:
                print("No diffusion model or config found. Shallow diffusion mode will False")
                self.shallow_diffusion = self.only_diffusion = False
                
        # load hubert and model
        if not self.only_diffusion:
            self.load_model(spk_mix_enable)
            self.hubert_model = utils.get_speech_encoder(self.speech_encoder,device=self.dev)
            self.volume_extractor = utils.Volume_Extractor(self.hop_size)
        else:
            self.hubert_model = utils.get_speech_encoder(self.diffusion_args.data.encoder,device=self.dev)
            self.volume_extractor = utils.Volume_Extractor(self.diffusion_args.data.block_size)
            
        if os.path.exists(cluster_model_path):
            if self.feature_retrieval:
                with open(cluster_model_path,"rb") as f:
                    self.cluster_model = pickle.load(f)
                self.big_npy = None
                self.now_spk_id = -1
            else:
                self.cluster_model = cluster.get_cluster_model(cluster_model_path)
        else:
            self.feature_retrieval=False

        if self.shallow_diffusion :
            self.nsf_hifigan_enhance = False
        if self.nsf_hifigan_enhance:
            from modules.enhancer import Enhancer
            self.enhancer = Enhancer('nsf-hifigan', 'pretrain/nsf_hifigan/model',device=self.dev)
            
    def load_model(self, spk_mix_enable=False):
        # get model configuration
        self.net_g_ms = SynthesizerTrn(
            self.hps_ms.data.filter_length // 2 + 1,
            self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
            **self.hps_ms.model)
        _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
        self.dtype = list(self.net_g_ms.parameters())[0].dtype
        if "half" in self.net_g_path and torch.cuda.is_available():
            _ = self.net_g_ms.half().eval().to(self.dev)
        else:
            _ = self.net_g_ms.eval().to(self.dev)
        if spk_mix_enable:
            self.net_g_ms.EnableCharacterMix(len(self.spk2id), self.dev)

    def get_unit_f0(self, wav, tran, cluster_infer_ratio, speaker, f0_filter ,f0_predictor,cr_threshold=0.05):

        if not hasattr(self,"f0_predictor_object") or self.f0_predictor_object is None or f0_predictor != self.f0_predictor_object.name:
            self.f0_predictor_object = utils.get_f0_predictor(f0_predictor,hop_length=self.hop_size,sampling_rate=self.target_sample,device=self.dev,threshold=cr_threshold)
        f0, uv = self.f0_predictor_object.compute_f0_uv(wav)

        if f0_filter and sum(f0) == 0:
            raise F0FilterException("No voice detected")
        f0 = torch.FloatTensor(f0).to(self.dev)
        uv = torch.FloatTensor(uv).to(self.dev)

        f0 = f0 * 2 ** (tran / 12)
        f0 = f0.unsqueeze(0)
        uv = uv.unsqueeze(0)

        wav = torch.from_numpy(wav).to(self.dev)
        if not hasattr(self,"audio16k_resample_transform"):
            self.audio16k_resample_transform = torchaudio.transforms.Resample(self.target_sample, 16000).to(self.dev)
        wav16k = self.audio16k_resample_transform(wav[None,:])[0]
        
        c = self.hubert_model.encoder(wav16k)
        c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1],self.unit_interpolate_mode)

        if cluster_infer_ratio !=0:
            if self.feature_retrieval:
                speaker_id = self.spk2id.get(speaker)
                if not speaker_id and type(speaker) is int:
                    if len(self.spk2id.__dict__) >= speaker:
                        speaker_id = speaker
                if speaker_id is None:
                    raise RuntimeError("The name you entered is not in the speaker list!")
                feature_index = self.cluster_model[speaker_id]
                feat_np = np.ascontiguousarray(c.transpose(0,1).cpu().numpy())
                if self.big_npy is None or self.now_spk_id != speaker_id:
                   self.big_npy = feature_index.reconstruct_n(0, feature_index.ntotal)
                   self.now_spk_id = speaker_id
                print("starting feature retrieval...")
                score, ix = feature_index.search(feat_np, k=8)
                weight = np.square(1 / score)
                weight /= weight.sum(axis=1, keepdims=True)
                npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
                c = cluster_infer_ratio * npy + (1 - cluster_infer_ratio) * feat_np
                c = torch.FloatTensor(c).to(self.dev).transpose(0,1)
                print("end feature retrieval...")
            else:
                cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T
                cluster_c = torch.FloatTensor(cluster_c).to(self.dev)
                c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c

        c = c.unsqueeze(0)
        return c, f0, uv
    
    def infer(self, speaker, tran, raw_path,
              cluster_infer_ratio=0,
              auto_predict_f0=False,
              noice_scale=0.4,
              f0_filter=False,
              f0_predictor='rmvpe',
              enhancer_adaptive_key = 0,
              cr_threshold = 0.05,
              k_step = 100,
              frame = 0,
              spk_mix = False,
              second_encoding = False,
              loudness_envelope_adjustment = 1
              ):
        torchaudio.set_audio_backend("soundfile")
        wav, sr = torchaudio.load(raw_path)
        if not hasattr(self,"audio_resample_transform") or self.audio16k_resample_transform.orig_freq != sr:
            self.audio_resample_transform = torchaudio.transforms.Resample(sr,self.target_sample)
        wav = self.audio_resample_transform(wav).numpy()[0]
        if spk_mix:
            c, f0, uv = self.get_unit_f0(wav, tran, 0, None, f0_filter,f0_predictor,cr_threshold=cr_threshold)
            n_frames = f0.size(1)
            sid = speaker[:, frame:frame+n_frames].transpose(0,1)
        else:
            speaker_id = self.spk2id.get(speaker)
            if not speaker_id and type(speaker) is int:
                if len(self.spk2id.__dict__) >= speaker:
                    speaker_id = speaker
            if speaker_id is None:
                raise RuntimeError("The name you entered is not in the speaker list!")
            sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0)
            c, f0, uv = self.get_unit_f0(wav, tran, cluster_infer_ratio, speaker, f0_filter,f0_predictor,cr_threshold=cr_threshold)
            n_frames = f0.size(1)
        c = c.to(self.dtype)
        f0 = f0.to(self.dtype)
        uv = uv.to(self.dtype)
        with torch.no_grad():
            start = time.time()
            vol = None
            if not self.only_diffusion:
                vol = self.volume_extractor.extract(torch.FloatTensor(wav).to(self.dev)[None,:])[None,:].to(self.dev) if self.vol_embedding else None
                audio,f0 = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale,vol=vol)
                audio = audio[0,0].data.float()
                audio_mel = self.vocoder.extract(audio[None,:],self.target_sample) if self.shallow_diffusion else None
            else:
                audio = torch.FloatTensor(wav).to(self.dev)
                audio_mel = None
            if self.dtype != torch.float32:
                c = c.to(torch.float32)
                f0 = f0.to(torch.float32)
                uv = uv.to(torch.float32)
            if self.only_diffusion or self.shallow_diffusion:
                vol = self.volume_extractor.extract(audio[None,:])[None,:,None].to(self.dev) if vol is None else vol[:,:,None]
                if self.shallow_diffusion and second_encoding:
                    if not hasattr(self,"audio16k_resample_transform"):
                        self.audio16k_resample_transform = torchaudio.transforms.Resample(self.target_sample, 16000).to(self.dev)
                    audio16k = self.audio16k_resample_transform(audio[None,:])[0]
                    c = self.hubert_model.encoder(audio16k)
                    c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1],self.unit_interpolate_mode)
                f0 = f0[:,:,None]
                c = c.transpose(-1,-2)
                audio_mel = self.diffusion_model(
                c, 
                f0, 
                vol, 
                spk_id = sid, 
                spk_mix_dict = None,
                gt_spec=audio_mel,
                infer=True, 
                infer_speedup=self.diffusion_args.infer.speedup, 
                method=self.diffusion_args.infer.method,
                k_step=k_step)
                audio = self.vocoder.infer(audio_mel, f0).squeeze()
            if self.nsf_hifigan_enhance:
                audio, _ = self.enhancer.enhance(
                                    audio[None,:], 
                                    self.target_sample, 
                                    f0[:,:,None], 
                                    self.hps_ms.data.hop_length, 
                                    adaptive_key = enhancer_adaptive_key)
            if loudness_envelope_adjustment != 1:
                audio = utils.change_rms(wav,self.target_sample,audio,self.target_sample,loudness_envelope_adjustment)
            use_time = time.time() - start
            print("vits use time:{}".format(use_time))
        return audio, audio.shape[-1], n_frames

    def clear_empty(self):
        # clean up vram
        torch.cuda.empty_cache()

    def unload_model(self):
        # unload model
        self.net_g_ms = self.net_g_ms.to("cpu")
        del self.net_g_ms
        if hasattr(self,"enhancer"): 
            self.enhancer.enhancer = self.enhancer.enhancer.to("cpu")
            del self.enhancer.enhancer
            del self.enhancer
        gc.collect()

    def slice_inference(self,
                        raw_audio_path,
                        spk,
                        tran,
                        slice_db,
                        cluster_infer_ratio,
                        auto_predict_f0,
                        noice_scale,
                        pad_seconds=0.5,
                        clip_seconds=0,
                        lg_num=0,
                        lgr_num =0.75,
                        f0_predictor='rmvpe',
                        enhancer_adaptive_key = 0,
                        cr_threshold = 0.05,
                        k_step = 100,
                        use_spk_mix = False,
                        second_encoding = False,
                        loudness_envelope_adjustment = 1
                        ):
        if use_spk_mix:
            if len(self.spk2id) == 1:
                spk = self.spk2id.keys()[0]
                use_spk_mix = False
        wav_path = Path(raw_audio_path).with_suffix('.wav')
        chunks = slicer.cut(wav_path, db_thresh=slice_db)
        audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
        per_size = int(clip_seconds*audio_sr)
        lg_size = int(lg_num*audio_sr)
        lg_size_r = int(lg_size*lgr_num)
        lg_size_c_l = (lg_size-lg_size_r)//2
        lg_size_c_r = lg_size-lg_size_r-lg_size_c_l
        lg = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0

        if use_spk_mix:
            assert len(self.spk2id) == len(spk)
            audio_length = 0
            for (slice_tag, data) in audio_data:
                aud_length = int(np.ceil(len(data) / audio_sr * self.target_sample))
                if slice_tag:
                    audio_length += aud_length // self.hop_size
                    continue
                if per_size != 0:
                    datas = split_list_by_n(data, per_size,lg_size)
                else:
                    datas = [data]
                for k,dat in enumerate(datas):
                    pad_len = int(audio_sr * pad_seconds)
                    per_length = int(np.ceil(len(dat) / audio_sr * self.target_sample))
                    a_length = per_length + 2 * pad_len
                    audio_length += a_length // self.hop_size
            audio_length += len(audio_data)
            spk_mix_tensor = torch.zeros(size=(len(spk), audio_length)).to(self.dev)
            for i in range(len(spk)):
                last_end = None
                for mix in spk[i]:
                    if mix[3]<0. or mix[2]<0.:
                        raise RuntimeError("mix value must higer Than zero!")
                    begin = int(audio_length * mix[0])
                    end = int(audio_length * mix[1])
                    length = end - begin
                    if length<=0:                        
                        raise RuntimeError("begin Must lower Than end!")
                    step = (mix[3] - mix[2])/length
                    if last_end is not None:
                        if last_end != begin:
                            raise RuntimeError("[i]EndTime Must Equal [i+1]BeginTime!")
                    last_end = end
                    if step == 0.:
                        spk_mix_data = torch.zeros(length).to(self.dev) + mix[2]
                    else:
                        spk_mix_data = torch.arange(mix[2],mix[3],step).to(self.dev)
                    if(len(spk_mix_data)<length):
                        num_pad = length - len(spk_mix_data)
                        spk_mix_data = torch.nn.functional.pad(spk_mix_data, [0, num_pad], mode="reflect").to(self.dev)
                    spk_mix_tensor[i][begin:end] = spk_mix_data[:length]

            spk_mix_ten = torch.sum(spk_mix_tensor,dim=0).unsqueeze(0).to(self.dev)
            # spk_mix_tensor[0][spk_mix_ten<0.001] = 1.0
            for i, x in enumerate(spk_mix_ten[0]):
                if x == 0.0:
                    spk_mix_ten[0][i] = 1.0
                    spk_mix_tensor[:,i] = 1.0 / len(spk)
            spk_mix_tensor = spk_mix_tensor / spk_mix_ten
            if not ((torch.sum(spk_mix_tensor,dim=0) - 1.)<0.0001).all():
                raise RuntimeError("sum(spk_mix_tensor) not equal 1")
            spk = spk_mix_tensor

        global_frame = 0
        audio = []
        for (slice_tag, data) in audio_data:
            print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
            # padd
            length = int(np.ceil(len(data) / audio_sr * self.target_sample))
            if slice_tag:
                print('jump empty segment')
                _audio = np.zeros(length)
                audio.extend(list(pad_array(_audio, length)))
                global_frame += length // self.hop_size
                continue
            if per_size != 0:
                datas = split_list_by_n(data, per_size,lg_size)
            else:
                datas = [data]
            for k,dat in enumerate(datas):
                per_length = int(np.ceil(len(dat) / audio_sr * self.target_sample)) if clip_seconds!=0 else length
                if clip_seconds!=0: 
                    print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
                # padd
                pad_len = int(audio_sr * pad_seconds)
                dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
                raw_path = io.BytesIO()
                soundfile.write(raw_path, dat, audio_sr, format="wav")
                raw_path.seek(0)
                out_audio, out_sr, out_frame = self.infer(spk, tran, raw_path,
                                                    cluster_infer_ratio=cluster_infer_ratio,
                                                    auto_predict_f0=auto_predict_f0,
                                                    noice_scale=noice_scale,
                                                    f0_predictor = f0_predictor,
                                                    enhancer_adaptive_key = enhancer_adaptive_key,
                                                    cr_threshold = cr_threshold,
                                                    k_step = k_step,
                                                    frame = global_frame,
                                                    spk_mix = use_spk_mix,
                                                    second_encoding = second_encoding,
                                                    loudness_envelope_adjustment = loudness_envelope_adjustment
                                                    )
                global_frame += out_frame
                _audio = out_audio.cpu().numpy()
                pad_len = int(self.target_sample * pad_seconds)
                _audio = _audio[pad_len:-pad_len]
                _audio = pad_array(_audio, per_length)
                if lg_size!=0 and k!=0:
                    lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr_num != 1 else audio[-lg_size:]
                    lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r]  if lgr_num != 1 else _audio[0:lg_size]
                    lg_pre = lg1*(1-lg)+lg2*lg
                    audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr_num != 1 else audio[0:-lg_size]
                    audio.extend(lg_pre)
                    _audio = _audio[lg_size_c_l+lg_size_r:] if lgr_num != 1 else _audio[lg_size:]
                audio.extend(list(_audio))
        return np.array(audio)

class RealTimeVC:
    def __init__(self):
        self.last_chunk = None
        self.last_o = None
        self.chunk_len = 16000  # chunk length
        self.pre_len = 3840  # cross fade length, multiples of 640

    # Input and output are 1-dimensional numpy waveform arrays

    def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path,
                cluster_infer_ratio=0,
                auto_predict_f0=False,
                noice_scale=0.4,
                f0_filter=False):

        import maad
        audio, sr = torchaudio.load(input_wav_path)
        audio = audio.cpu().numpy()[0]
        temp_wav = io.BytesIO()
        if self.last_chunk is None:
            input_wav_path.seek(0)

            audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path,
                                        cluster_infer_ratio=cluster_infer_ratio,
                                        auto_predict_f0=auto_predict_f0,
                                        noice_scale=noice_scale,
                                        f0_filter=f0_filter)
            
            audio = audio.cpu().numpy()
            self.last_chunk = audio[-self.pre_len:]
            self.last_o = audio
            return audio[-self.chunk_len:]
        else:
            audio = np.concatenate([self.last_chunk, audio])
            soundfile.write(temp_wav, audio, sr, format="wav")
            temp_wav.seek(0)

            audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav,
                                        cluster_infer_ratio=cluster_infer_ratio,
                                        auto_predict_f0=auto_predict_f0,
                                        noice_scale=noice_scale,
                                        f0_filter=f0_filter)

            audio = audio.cpu().numpy()
            ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
            self.last_chunk = audio[-self.pre_len:]
            self.last_o = audio
            return ret[self.chunk_len:2 * self.chunk_len]