Spaces:
Running
Running
File size: 20,720 Bytes
1f4e6d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
import argparse
import glob
import json
import logging
import os
import re
import subprocess
import sys
import traceback
from multiprocessing import cpu_count
import faiss
import librosa
import numpy as np
import torch
from scipy.io.wavfile import read
from sklearn.cluster import MiniBatchKMeans
from torch.nn import functional as F
MATPLOTLIB_FLAG = False
logging.basicConfig(stream=sys.stdout, level=logging.WARN)
logger = logging
f0_bin = 256
f0_max = 1100.0
f0_min = 50.0
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
def normalize_f0(f0, x_mask, uv, random_scale=True):
# calculate means based on x_mask
uv_sum = torch.sum(uv, dim=1, keepdim=True)
uv_sum[uv_sum == 0] = 9999
means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum
if random_scale:
factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
else:
factor = torch.ones(f0.shape[0], 1).to(f0.device)
# normalize f0 based on means and factor
f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
if torch.isnan(f0_norm).any():
exit(0)
return f0_norm * x_mask
def plot_data_to_numpy(x, y):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10, 2))
plt.plot(x)
plt.plot(y)
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def f0_to_coarse(f0):
f0_mel = 1127 * (1 + f0 / 700).log()
a = (f0_bin - 2) / (f0_mel_max - f0_mel_min)
b = f0_mel_min * a - 1.
f0_mel = torch.where(f0_mel > 0, f0_mel * a - b, f0_mel)
# torch.clip_(f0_mel, min=1., max=float(f0_bin - 1))
f0_coarse = torch.round(f0_mel).long()
f0_coarse = f0_coarse * (f0_coarse > 0)
f0_coarse = f0_coarse + ((f0_coarse < 1) * 1)
f0_coarse = f0_coarse * (f0_coarse < f0_bin)
f0_coarse = f0_coarse + ((f0_coarse >= f0_bin) * (f0_bin - 1))
return f0_coarse
def get_content(cmodel, y):
with torch.no_grad():
c = cmodel.extract_features(y.squeeze(1))[0]
c = c.transpose(1, 2)
return c
def get_f0_predictor(f0_predictor,hop_length,sampling_rate,**kargs):
if f0_predictor == "pm":
from modules.F0Predictor.PMF0Predictor import PMF0Predictor
f0_predictor_object = PMF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
elif f0_predictor == "crepe":
from modules.F0Predictor.CrepeF0Predictor import CrepeF0Predictor
f0_predictor_object = CrepeF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,device=kargs["device"],threshold=kargs["threshold"])
elif f0_predictor == "harvest":
from modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor
f0_predictor_object = HarvestF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
elif f0_predictor == "dio":
from modules.F0Predictor.DioF0Predictor import DioF0Predictor
f0_predictor_object = DioF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
elif f0_predictor == "rmvpe":
from modules.F0Predictor.RMVPEF0Predictor import RMVPEF0Predictor
f0_predictor_object = RMVPEF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,dtype=torch.float32 ,device=kargs["device"],threshold=kargs["threshold"])
elif f0_predictor == "fcpe":
from modules.F0Predictor.FCPEF0Predictor import FCPEF0Predictor
f0_predictor_object = FCPEF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,dtype=torch.float32 ,device=kargs["device"],threshold=kargs["threshold"])
else:
raise Exception("Unknown f0 predictor")
return f0_predictor_object
def get_speech_encoder(speech_encoder,device=None,**kargs):
if speech_encoder == "vec768l12":
from vencoder.ContentVec768L12 import ContentVec768L12
speech_encoder_object = ContentVec768L12(device = device)
elif speech_encoder == "vec256l9":
from vencoder.ContentVec256L9 import ContentVec256L9
speech_encoder_object = ContentVec256L9(device = device)
elif speech_encoder == "vec256l9-onnx":
from vencoder.ContentVec256L9_Onnx import ContentVec256L9_Onnx
speech_encoder_object = ContentVec256L9_Onnx(device = device)
elif speech_encoder == "vec256l12-onnx":
from vencoder.ContentVec256L12_Onnx import ContentVec256L12_Onnx
speech_encoder_object = ContentVec256L12_Onnx(device = device)
elif speech_encoder == "vec768l9-onnx":
from vencoder.ContentVec768L9_Onnx import ContentVec768L9_Onnx
speech_encoder_object = ContentVec768L9_Onnx(device = device)
elif speech_encoder == "vec768l12-onnx":
from vencoder.ContentVec768L12_Onnx import ContentVec768L12_Onnx
speech_encoder_object = ContentVec768L12_Onnx(device = device)
elif speech_encoder == "hubertsoft-onnx":
from vencoder.HubertSoft_Onnx import HubertSoft_Onnx
speech_encoder_object = HubertSoft_Onnx(device = device)
elif speech_encoder == "hubertsoft":
from vencoder.HubertSoft import HubertSoft
speech_encoder_object = HubertSoft(device = device)
elif speech_encoder == "whisper-ppg":
from vencoder.WhisperPPG import WhisperPPG
speech_encoder_object = WhisperPPG(device = device)
elif speech_encoder == "cnhubertlarge":
from vencoder.CNHubertLarge import CNHubertLarge
speech_encoder_object = CNHubertLarge(device = device)
elif speech_encoder == "dphubert":
from vencoder.DPHubert import DPHubert
speech_encoder_object = DPHubert(device = device)
elif speech_encoder == "whisper-ppg-large":
from vencoder.WhisperPPGLarge import WhisperPPGLarge
speech_encoder_object = WhisperPPGLarge(device = device)
elif speech_encoder == "wavlmbase+":
from vencoder.WavLMBasePlus import WavLMBasePlus
speech_encoder_object = WavLMBasePlus(device = device)
else:
raise Exception("Unknown speech encoder")
return speech_encoder_object
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
learning_rate = checkpoint_dict['learning_rate']
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
optimizer.load_state_dict(checkpoint_dict['optimizer'])
saved_state_dict = checkpoint_dict['model']
model = model.to(list(saved_state_dict.values())[0].dtype)
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
# assert "dec" in k or "disc" in k
# print("load", k)
new_state_dict[k] = saved_state_dict[k]
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
except Exception:
if "enc_q" not in k or "emb_g" not in k:
print("%s is not in the checkpoint,please check your checkpoint.If you're using pretrain model,just ignore this warning." % k)
logger.info("%s is not in the checkpoint" % k)
new_state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict)
else:
model.load_state_dict(new_state_dict)
print("load ")
logger.info("Loaded checkpoint '{}' (iteration {})".format(
checkpoint_path, iteration))
return model, optimizer, learning_rate, iteration
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
logger.info("Saving model and optimizer state at iteration {} to {}".format(
iteration, checkpoint_path))
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save({'model': state_dict,
'iteration': iteration,
'optimizer': optimizer.state_dict(),
'learning_rate': learning_rate}, checkpoint_path)
def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
"""Freeing up space by deleting saved ckpts
Arguments:
path_to_models -- Path to the model directory
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
sort_by_time -- True -> chronologically delete ckpts
False -> lexicographically delete ckpts
"""
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
def name_key(_f):
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
def time_key(_f):
return os.path.getmtime(os.path.join(path_to_models, _f))
sort_key = time_key if sort_by_time else name_key
def x_sorted(_x):
return sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")], key=sort_key)
to_del = [os.path.join(path_to_models, fn) for fn in
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
def del_info(fn):
return logger.info(f".. Free up space by deleting ckpt {fn}")
def del_routine(x):
return [os.remove(x), del_info(x)]
[del_routine(fn) for fn in to_del]
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
for k, v in scalars.items():
writer.add_scalar(k, v, global_step)
for k, v in histograms.items():
writer.add_histogram(k, v, global_step)
for k, v in images.items():
writer.add_image(k, v, global_step, dataformats='HWC')
for k, v in audios.items():
writer.add_audio(k, v, global_step, audio_sampling_rate)
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
f_list = glob.glob(os.path.join(dir_path, regex))
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
x = f_list[-1]
print(x)
return x
def plot_spectrogram_to_numpy(spectrogram):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10,2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
interpolation='none')
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def plot_alignment_to_numpy(alignment, info=None):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
interpolation='none')
fig.colorbar(im, ax=ax)
xlabel = 'Decoder timestep'
if info is not None:
xlabel += '\n\n' + info
plt.xlabel(xlabel)
plt.ylabel('Encoder timestep')
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def load_wav_to_torch(full_path):
sampling_rate, data = read(full_path)
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
def load_filepaths_and_text(filename, split="|"):
with open(filename, encoding='utf-8') as f:
filepaths_and_text = [line.strip().split(split) for line in f]
return filepaths_and_text
def get_hparams(init=True):
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default="./configs/config.json",
help='JSON file for configuration')
parser.add_argument('-m', '--model', type=str, required=True,
help='Model name')
args = parser.parse_args()
model_dir = os.path.join("./logs", args.model)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
config_path = args.config
config_save_path = os.path.join(model_dir, "config.json")
if init:
with open(config_path, "r") as f:
data = f.read()
with open(config_save_path, "w") as f:
f.write(data)
else:
with open(config_save_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_dir
return hparams
def get_hparams_from_dir(model_dir):
config_save_path = os.path.join(model_dir, "config.json")
with open(config_save_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams =HParams(**config)
hparams.model_dir = model_dir
return hparams
def get_hparams_from_file(config_path, infer_mode = False):
with open(config_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams =HParams(**config) if not infer_mode else InferHParams(**config)
return hparams
def check_git_hash(model_dir):
source_dir = os.path.dirname(os.path.realpath(__file__))
if not os.path.exists(os.path.join(source_dir, ".git")):
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
source_dir
))
return
cur_hash = subprocess.getoutput("git rev-parse HEAD")
path = os.path.join(model_dir, "githash")
if os.path.exists(path):
saved_hash = open(path).read()
if saved_hash != cur_hash:
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
saved_hash[:8], cur_hash[:8]))
else:
open(path, "w").write(cur_hash)
def get_logger(model_dir, filename="train.log"):
global logger
logger = logging.getLogger(os.path.basename(model_dir))
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
h = logging.FileHandler(os.path.join(model_dir, filename))
h.setLevel(logging.DEBUG)
h.setFormatter(formatter)
logger.addHandler(h)
return logger
def repeat_expand_2d(content, target_len, mode = 'left'):
# content : [h, t]
return repeat_expand_2d_left(content, target_len) if mode == 'left' else repeat_expand_2d_other(content, target_len, mode)
def repeat_expand_2d_left(content, target_len):
# content : [h, t]
src_len = content.shape[-1]
target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
temp = torch.arange(src_len+1) * target_len / src_len
current_pos = 0
for i in range(target_len):
if i < temp[current_pos+1]:
target[:, i] = content[:, current_pos]
else:
current_pos += 1
target[:, i] = content[:, current_pos]
return target
# mode : 'nearest'| 'linear'| 'bilinear'| 'bicubic'| 'trilinear'| 'area'
def repeat_expand_2d_other(content, target_len, mode = 'nearest'):
# content : [h, t]
content = content[None,:,:]
target = F.interpolate(content,size=target_len,mode=mode)[0]
return target
def mix_model(model_paths,mix_rate,mode):
mix_rate = torch.FloatTensor(mix_rate)/100
model_tem = torch.load(model_paths[0])
models = [torch.load(path)["model"] for path in model_paths]
if mode == 0:
mix_rate = F.softmax(mix_rate,dim=0)
for k in model_tem["model"].keys():
model_tem["model"][k] = torch.zeros_like(model_tem["model"][k])
for i,model in enumerate(models):
model_tem["model"][k] += model[k]*mix_rate[i]
torch.save(model_tem,os.path.join(os.path.curdir,"output.pth"))
return os.path.join(os.path.curdir,"output.pth")
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比 from RVC
# print(data1.max(),data2.max())
rms1 = librosa.feature.rms(
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
) # 每半秒一个点
rms2 = librosa.feature.rms(y=data2.detach().cpu().numpy(), frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
rms1 = torch.from_numpy(rms1).to(data2.device)
rms1 = F.interpolate(
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
).squeeze()
rms2 = torch.from_numpy(rms2).to(data2.device)
rms2 = F.interpolate(
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
).squeeze()
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
data2 *= (
torch.pow(rms1, torch.tensor(1 - rate))
* torch.pow(rms2, torch.tensor(rate - 1))
)
return data2
def train_index(spk_name,root_dir = "dataset/44k/"): #from: RVC https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI
n_cpu = cpu_count()
print("The feature index is constructing.")
exp_dir = os.path.join(root_dir,spk_name)
listdir_res = []
for file in os.listdir(exp_dir):
if ".wav.soft.pt" in file:
listdir_res.append(os.path.join(exp_dir,file))
if len(listdir_res) == 0:
raise Exception("You need to run preprocess_hubert_f0.py!")
npys = []
for name in sorted(listdir_res):
phone = torch.load(name)[0].transpose(-1,-2).numpy()
npys.append(phone)
big_npy = np.concatenate(npys, 0)
big_npy_idx = np.arange(big_npy.shape[0])
np.random.shuffle(big_npy_idx)
big_npy = big_npy[big_npy_idx]
if big_npy.shape[0] > 2e5:
# if(1):
info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]
print(info)
try:
big_npy = (
MiniBatchKMeans(
n_clusters=10000,
verbose=True,
batch_size=256 * n_cpu,
compute_labels=False,
init="random",
)
.fit(big_npy)
.cluster_centers_
)
except Exception:
info = traceback.format_exc()
print(info)
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
index = faiss.index_factory(big_npy.shape[1] , "IVF%s,Flat" % n_ivf)
index_ivf = faiss.extract_index_ivf(index) #
index_ivf.nprobe = 1
index.train(big_npy)
batch_size_add = 8192
for i in range(0, big_npy.shape[0], batch_size_add):
index.add(big_npy[i : i + batch_size_add])
# faiss.write_index(
# index,
# f"added_{spk_name}.index"
# )
print("Successfully build index")
return index
class HParams():
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()
def get(self,index):
return self.__dict__.get(index)
class InferHParams(HParams):
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = InferHParams(**v)
self[k] = v
def __getattr__(self,index):
return self.get(index)
class Volume_Extractor:
def __init__(self, hop_size = 512):
self.hop_size = hop_size
def extract(self, audio): # audio: 2d tensor array
if not isinstance(audio,torch.Tensor):
audio = torch.Tensor(audio)
n_frames = int(audio.size(-1) // self.hop_size)
audio2 = audio ** 2
audio2 = torch.nn.functional.pad(audio2, (int(self.hop_size // 2), int((self.hop_size + 1) // 2)), mode = 'reflect')
volume = torch.nn.functional.unfold(audio2[:,None,None,:],(1,self.hop_size),stride=self.hop_size)[:,:,:n_frames].mean(dim=1)[0]
volume = torch.sqrt(volume)
return volume
|