File size: 7,039 Bytes
1f4e6d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import random

import numpy as np
import torch
import torch.utils.data

import utils
from modules.mel_processing import spectrogram_torch
from utils import load_filepaths_and_text, load_wav_to_torch

# import h5py


"""Multi speaker version"""


class TextAudioSpeakerLoader(torch.utils.data.Dataset):
    """
        1) loads audio, speaker_id, text pairs
        2) normalizes text and converts them to sequences of integers
        3) computes spectrograms from audio files.
    """

    def __init__(self, audiopaths, hparams, all_in_mem: bool = False, vol_aug: bool = True):
        self.audiopaths = load_filepaths_and_text(audiopaths)
        self.hparams = hparams
        self.max_wav_value = hparams.data.max_wav_value
        self.sampling_rate = hparams.data.sampling_rate
        self.filter_length = hparams.data.filter_length
        self.hop_length = hparams.data.hop_length
        self.win_length = hparams.data.win_length
        self.unit_interpolate_mode = hparams.data.unit_interpolate_mode
        self.sampling_rate = hparams.data.sampling_rate
        self.use_sr = hparams.train.use_sr
        self.spec_len = hparams.train.max_speclen
        self.spk_map = hparams.spk
        self.vol_emb = hparams.model.vol_embedding
        self.vol_aug = hparams.train.vol_aug and vol_aug
        random.seed(1234)
        random.shuffle(self.audiopaths)
        
        self.all_in_mem = all_in_mem
        if self.all_in_mem:
            self.cache = [self.get_audio(p[0]) for p in self.audiopaths]

    def get_audio(self, filename):
        filename = filename.replace("\\", "/")
        audio, sampling_rate = load_wav_to_torch(filename)
        if sampling_rate != self.sampling_rate:
            raise ValueError(
                "Sample Rate not match. Expect {} but got {} from {}".format(
                    self.sampling_rate, sampling_rate, filename))
        audio_norm = audio / self.max_wav_value
        audio_norm = audio_norm.unsqueeze(0)
        spec_filename = filename.replace(".wav", ".spec.pt")

        # Ideally, all data generated after Mar 25 should have .spec.pt
        if os.path.exists(spec_filename):
            spec = torch.load(spec_filename)
        else:
            spec = spectrogram_torch(audio_norm, self.filter_length,
                                     self.sampling_rate, self.hop_length, self.win_length,
                                     center=False)
            spec = torch.squeeze(spec, 0)
            torch.save(spec, spec_filename)

        spk = filename.split("/")[-2]
        spk = torch.LongTensor([self.spk_map[spk]])

        f0, uv = np.load(filename + ".f0.npy",allow_pickle=True)
        
        f0 = torch.FloatTensor(np.array(f0,dtype=float))
        uv = torch.FloatTensor(np.array(uv,dtype=float))

        c = torch.load(filename+ ".soft.pt")
        c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[0], mode=self.unit_interpolate_mode)
        if self.vol_emb:
            volume_path = filename + ".vol.npy"
            volume = np.load(volume_path)
            volume = torch.from_numpy(volume).float()
        else:
            volume = None

        lmin = min(c.size(-1), spec.size(-1))
        assert abs(c.size(-1) - spec.size(-1)) < 3, (c.size(-1), spec.size(-1), f0.shape, filename)
        assert abs(audio_norm.shape[1]-lmin * self.hop_length) < 3 * self.hop_length
        spec, c, f0, uv = spec[:, :lmin], c[:, :lmin], f0[:lmin], uv[:lmin]
        audio_norm = audio_norm[:, :lmin * self.hop_length]
        if volume is not None:
            volume = volume[:lmin]
        return c, f0, spec, audio_norm, spk, uv, volume

    def random_slice(self, c, f0, spec, audio_norm, spk, uv, volume):
        # if spec.shape[1] < 30:
        #     print("skip too short audio:", filename)
        #     return None

        if random.choice([True, False]) and self.vol_aug and volume is not None:
            max_amp = float(torch.max(torch.abs(audio_norm))) + 1e-5
            max_shift = min(1, np.log10(1/max_amp))
            log10_vol_shift = random.uniform(-1, max_shift)
            audio_norm = audio_norm * (10 ** log10_vol_shift)
            volume = volume * (10 ** log10_vol_shift)
            spec = spectrogram_torch(audio_norm,
            self.hparams.data.filter_length,
            self.hparams.data.sampling_rate,
            self.hparams.data.hop_length,
            self.hparams.data.win_length,
            center=False)[0]

        if spec.shape[1] > 800:
            start = random.randint(0, spec.shape[1]-800)
            end = start + 790
            spec, c, f0, uv = spec[:, start:end], c[:, start:end], f0[start:end], uv[start:end]
            audio_norm = audio_norm[:, start * self.hop_length : end * self.hop_length]
            if volume is not None:
                volume = volume[start:end]
        return c, f0, spec, audio_norm, spk, uv,volume

    def __getitem__(self, index):
        if self.all_in_mem:
            return self.random_slice(*self.cache[index])
        else:
            return self.random_slice(*self.get_audio(self.audiopaths[index][0]))

    def __len__(self):
        return len(self.audiopaths)


class TextAudioCollate:

    def __call__(self, batch):
        batch = [b for b in batch if b is not None]

        input_lengths, ids_sorted_decreasing = torch.sort(
            torch.LongTensor([x[0].shape[1] for x in batch]),
            dim=0, descending=True)

        max_c_len = max([x[0].size(1) for x in batch])
        max_wav_len = max([x[3].size(1) for x in batch])

        lengths = torch.LongTensor(len(batch))

        c_padded = torch.FloatTensor(len(batch), batch[0][0].shape[0], max_c_len)
        f0_padded = torch.FloatTensor(len(batch), max_c_len)
        spec_padded = torch.FloatTensor(len(batch), batch[0][2].shape[0], max_c_len)
        wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
        spkids = torch.LongTensor(len(batch), 1)
        uv_padded = torch.FloatTensor(len(batch), max_c_len)
        volume_padded = torch.FloatTensor(len(batch), max_c_len)

        c_padded.zero_()
        spec_padded.zero_()
        f0_padded.zero_()
        wav_padded.zero_()
        uv_padded.zero_()
        volume_padded.zero_()

        for i in range(len(ids_sorted_decreasing)):
            row = batch[ids_sorted_decreasing[i]]

            c = row[0]
            c_padded[i, :, :c.size(1)] = c
            lengths[i] = c.size(1)

            f0 = row[1]
            f0_padded[i, :f0.size(0)] = f0

            spec = row[2]
            spec_padded[i, :, :spec.size(1)] = spec

            wav = row[3]
            wav_padded[i, :, :wav.size(1)] = wav

            spkids[i, 0] = row[4]

            uv = row[5]
            uv_padded[i, :uv.size(0)] = uv
            volume = row[6]
            if volume is not None:
                volume_padded[i, :volume.size(0)] = volume
            else :
                volume_padded = None
        return c_padded, f0_padded, spec_padded, wav_padded, spkids, lengths, uv_padded, volume_padded