File size: 9,661 Bytes
1f4e6d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from dataclasses import dataclass
from typing import Dict, Iterable, Optional

import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor, nn

from .decoding import decode as decode_function
from .decoding import detect_language as detect_language_function


@dataclass
class ModelDimensions:
    n_mels: int
    n_audio_ctx: int
    n_audio_state: int
    n_audio_head: int
    n_audio_layer: int
    n_vocab: int
    n_text_ctx: int
    n_text_state: int
    n_text_head: int
    n_text_layer: int


class LayerNorm(nn.LayerNorm):
    def forward(self, x: Tensor) -> Tensor:
        return super().forward(x.float()).type(x.dtype)


class Linear(nn.Linear):
    def forward(self, x: Tensor) -> Tensor:
        return F.linear(
            x, self.weight.to(x.dtype), None if self.bias is None else self.bias.to(x.dtype)
        )


class Conv1d(nn.Conv1d):
    def _conv_forward(self, x: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor:
        return super()._conv_forward(
            x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype)
        )


def sinusoids(length, channels, max_timescale=10000):
    """Returns sinusoids for positional embedding"""
    assert channels % 2 == 0
    log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
    inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
    scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
    return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)


class MultiHeadAttention(nn.Module):
    def __init__(self, n_state: int, n_head: int):
        super().__init__()
        self.n_head = n_head
        self.query = Linear(n_state, n_state)
        self.key = Linear(n_state, n_state, bias=False)
        self.value = Linear(n_state, n_state)
        self.out = Linear(n_state, n_state)

    def forward(
        self,
        x: Tensor,
        xa: Optional[Tensor] = None,
        mask: Optional[Tensor] = None,
        kv_cache: Optional[dict] = None,
    ):
        q = self.query(x)

        if kv_cache is None or xa is None or self.key not in kv_cache:
            # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
            # otherwise, perform key/value projections for self- or cross-attention as usual.
            k = self.key(x if xa is None else xa)
            v = self.value(x if xa is None else xa)
        else:
            # for cross-attention, calculate keys and values once and reuse in subsequent calls.
            k = kv_cache[self.key]
            v = kv_cache[self.value]

        wv, qk = self.qkv_attention(q, k, v, mask)
        return self.out(wv), qk

    def qkv_attention(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None):
        n_batch, n_ctx, n_state = q.shape
        scale = (n_state // self.n_head) ** -0.25
        q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
        k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
        v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)

        qk = q @ k
        if mask is not None:
            qk = qk + mask[:n_ctx, :n_ctx]
        qk = qk.float()

        w = F.softmax(qk, dim=-1).to(q.dtype)
        return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()


class ResidualAttentionBlock(nn.Module):
    def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
        super().__init__()

        self.attn = MultiHeadAttention(n_state, n_head)
        self.attn_ln = LayerNorm(n_state)

        self.cross_attn = MultiHeadAttention(n_state, n_head) if cross_attention else None
        self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None

        n_mlp = n_state * 4
        self.mlp = nn.Sequential(Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state))
        self.mlp_ln = LayerNorm(n_state)

    def forward(
        self,
        x: Tensor,
        xa: Optional[Tensor] = None,
        mask: Optional[Tensor] = None,
        kv_cache: Optional[dict] = None,
    ):
        x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0]
        if self.cross_attn:
            x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
        x = x + self.mlp(self.mlp_ln(x))
        return x


class AudioEncoder(nn.Module):
    def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
        super().__init__()
        self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
        self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
        self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))

        self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
            [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
        )
        self.ln_post = LayerNorm(n_state)

    def forward(self, x: Tensor):
        """
        x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
            the mel spectrogram of the audio
        """
        x = F.gelu(self.conv1(x))
        x = F.gelu(self.conv2(x))
        x = x.permute(0, 2, 1)

        len_x = x.shape[1]
        len_e = self.positional_embedding.shape[0]
        assert len_x <= len_e, "incorrect audio shape"
        pos_e = self.positional_embedding[:len_x, :]
        x = (x + pos_e).to(x.dtype)

        for block in self.blocks:
            x = block(x)

        x = self.ln_post(x)
        return x


class TextDecoder(nn.Module):
    def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
        super().__init__()

        self.token_embedding = nn.Embedding(n_vocab, n_state)
        self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state))

        self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
            [ResidualAttentionBlock(n_state, n_head, cross_attention=True) for _ in range(n_layer)]
        )
        self.ln = LayerNorm(n_state)

        mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1)
        self.register_buffer("mask", mask, persistent=False)

    def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
        """
        x : torch.LongTensor, shape = (batch_size, <= n_ctx)
            the text tokens
        xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx)
            the encoded audio features to be attended on
        """
        offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
        x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]]
        x = x.to(xa.dtype)

        for block in self.blocks:
            x = block(x, xa, mask=self.mask, kv_cache=kv_cache)

        x = self.ln(x)
        logits = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float()

        return logits


class Whisper(nn.Module):
    def __init__(self, dims: ModelDimensions):
        super().__init__()
        self.dims = dims
        self.encoder = AudioEncoder(
            self.dims.n_mels,
            self.dims.n_audio_ctx,
            self.dims.n_audio_state,
            self.dims.n_audio_head,
            self.dims.n_audio_layer,
        )
        self.decoder = TextDecoder(
            self.dims.n_vocab,
            self.dims.n_text_ctx,
            self.dims.n_text_state,
            self.dims.n_text_head,
            self.dims.n_text_layer,
        )

    def embed_audio(self, mel: torch.Tensor):
        return self.encoder(mel)

    def logits(self, tokens: torch.Tensor, audio_features: torch.Tensor):
        return self.decoder(tokens, audio_features)

    def forward(self, mel: torch.Tensor, tokens: torch.Tensor) -> Dict[str, torch.Tensor]:
        return self.decoder(tokens, self.encoder(mel))

    @property
    def device(self):
        return next(self.parameters()).device

    @property
    def is_multilingual(self):
        return self.dims.n_vocab == 51865

    def install_kv_cache_hooks(self, cache: Optional[dict] = None):
        """
        The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value
        tensors calculated for the previous positions. This method returns a dictionary that stores
        all caches, and the necessary hooks for the key and value projection modules that save the
        intermediate tensors to be reused during later calculations.

        Returns
        -------
        cache : Dict[nn.Module, torch.Tensor]
            A dictionary object mapping the key/value projection modules to its cache
        hooks : List[RemovableHandle]
            List of PyTorch RemovableHandle objects to stop the hooks to be called
        """
        cache = {**cache} if cache is not None else {}
        hooks = []

        def save_to_cache(module, _, output):
            if module not in cache or output.shape[1] > self.decoder.positional_embedding.shape[0]:
                cache[module] = output  # save as-is, for the first token or cross attention
            else:
                cache[module] = torch.cat([cache[module], output], dim=1).detach()
            return cache[module]

        def install_hooks(layer: nn.Module):
            if isinstance(layer, MultiHeadAttention):
                hooks.append(layer.key.register_forward_hook(save_to_cache))
                hooks.append(layer.value.register_forward_hook(save_to_cache))

        self.decoder.apply(install_hooks)
        return cache, hooks

    detect_language = detect_language_function
    decode = decode_function