File size: 29,161 Bytes
c197152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
import subprocess, torch, os, traceback, sys, warnings, shutil, numpy as np
from mega import Mega
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
import threading
from time import sleep
from subprocess import Popen
import faiss
from random import shuffle
import json, datetime, requests
from gtts import gTTS
now_dir = os.getcwd()
sys.path.append(now_dir)
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
os.environ["TEMP"] = tmp
warnings.filterwarnings("ignore")
torch.manual_seed(114514)
from i18n import I18nAuto

import signal

import math

from utils import load_audio, CSVutil

global DoFormant, Quefrency, Timbre

if not os.path.isdir('csvdb/'):
    os.makedirs('csvdb')
    frmnt, stp = open("csvdb/formanting.csv", 'w'), open("csvdb/stop.csv", 'w')
    frmnt.close()
    stp.close()

try:
    DoFormant, Quefrency, Timbre = CSVutil('csvdb/formanting.csv', 'r', 'formanting')
    DoFormant = (
        lambda DoFormant: True if DoFormant.lower() == 'true' else (False if DoFormant.lower() == 'false' else DoFormant)
    )(DoFormant)
except (ValueError, TypeError, IndexError):
    DoFormant, Quefrency, Timbre = False, 1.0, 1.0
    CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, Quefrency, Timbre)

def download_models():
    # Download hubert base model if not present
    if not os.path.isfile('./hubert_base.pt'):
        response = requests.get('https://huggingface.co/kindahex/voice-conversion/blob/main/hubert_base.pt')

        if response.status_code == 200:
            with open('./hubert_base.pt', 'wb') as f:
                f.write(response.content)
            print("Downloaded hubert base model file successfully. File saved to ./hubert_base.pt.")
        else:
            raise Exception("Failed to download hubert base model file. Status code: " + str(response.status_code) + ".")
        
    # Download rmvpe model if not present
    if not os.path.isfile('./rmvpe.pt'):
        response = requests.get('https://huggingface.co/kindahex/voice-conversion/blob/main/rmvpe.pt')

        if response.status_code == 200:
            with open('./rmvpe.pt', 'wb') as f:
                f.write(response.content)
            print("Downloaded rmvpe model file successfully. File saved to ./rmvpe.pt.")
        else:
            raise Exception("Failed to download rmvpe model file. Status code: " + str(response.status_code) + ".")

download_models()

print("\n-------------------------------\nRVC v2 - GORGE RVC\n-------------------------------\n")

def formant_apply(qfrency, tmbre):
    Quefrency = qfrency
    Timbre = tmbre
    DoFormant = True
    CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
    
    return ({"value": Quefrency, "__type__": "update"}, {"value": Timbre, "__type__": "update"})

def get_fshift_presets():
    fshift_presets_list = []
    for dirpath, _, filenames in os.walk("./formantshiftcfg/"):
        for filename in filenames:
            if filename.endswith(".txt"):
                fshift_presets_list.append(os.path.join(dirpath,filename).replace('\\','/'))
                
    if len(fshift_presets_list) > 0:
        return fshift_presets_list
    else:
        return ''



def formant_enabled(cbox, qfrency, tmbre, frmntapply, formantpreset, formant_refresh_button):
    
    if (cbox):

        DoFormant = True
        CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
        #print(f"is checked? - {cbox}\ngot {DoFormant}")
        
        return (
            {"value": True, "__type__": "update"},
            {"visible": True, "__type__": "update"},
            {"visible": True, "__type__": "update"},
            {"visible": True, "__type__": "update"},
            {"visible": True, "__type__": "update"},
            {"visible": True, "__type__": "update"},
        )
        
        
    else:
        
        DoFormant = False
        CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
        
        #print(f"is checked? - {cbox}\ngot {DoFormant}")
        return (
            {"value": False, "__type__": "update"},
            {"visible": False, "__type__": "update"},
            {"visible": False, "__type__": "update"},
            {"visible": False, "__type__": "update"},
            {"visible": False, "__type__": "update"},
            {"visible": False, "__type__": "update"},
            {"visible": False, "__type__": "update"},
        )
        


def preset_apply(preset, qfer, tmbr):
    if str(preset) != '':
        with open(str(preset), 'r') as p:
            content = p.readlines()
            qfer, tmbr = content[0].split('\n')[0], content[1]
            
            formant_apply(qfer, tmbr)
    else:
        pass
    return ({"value": qfer, "__type__": "update"}, {"value": tmbr, "__type__": "update"})

def update_fshift_presets(preset, qfrency, tmbre):
    
    qfrency, tmbre = preset_apply(preset, qfrency, tmbre)
    
    if (str(preset) != ''):
        with open(str(preset), 'r') as p:
            content = p.readlines()
            qfrency, tmbre = content[0].split('\n')[0], content[1]
            
            formant_apply(qfrency, tmbre)
    else:
        pass
    return (
        {"choices": get_fshift_presets(), "__type__": "update"},
        {"value": qfrency, "__type__": "update"},
        {"value": tmbre, "__type__": "update"},
    )

i18n = I18nAuto()
#i18n.print()
# 判断是否有能用来训练和加速推理的N卡
ngpu = torch.cuda.device_count()
gpu_infos = []
mem = []
if (not torch.cuda.is_available()) or ngpu == 0:
    if_gpu_ok = False
else:
    if_gpu_ok = False
    for i in range(ngpu):
        gpu_name = torch.cuda.get_device_name(i)
        if (
            "10" in gpu_name
            or "16" in gpu_name
            or "20" in gpu_name
            or "30" in gpu_name
            or "40" in gpu_name
            or "A2" in gpu_name.upper()
            or "A3" in gpu_name.upper()
            or "A4" in gpu_name.upper()
            or "P4" in gpu_name.upper()
            or "A50" in gpu_name.upper()
            or "A60" in gpu_name.upper()
            or "70" in gpu_name
            or "80" in gpu_name
            or "90" in gpu_name
            or "M4" in gpu_name.upper()
            or "T4" in gpu_name.upper()
            or "TITAN" in gpu_name.upper()
        ):  # A10#A100#V100#A40#P40#M40#K80#A4500
            if_gpu_ok = True  # 至少有一张能用的N卡
            gpu_infos.append("%s\t%s" % (i, gpu_name))
            mem.append(
                int(
                    torch.cuda.get_device_properties(i).total_memory
                    / 1024
                    / 1024
                    / 1024
                    + 0.4
                )
            )
if if_gpu_ok == True and len(gpu_infos) > 0:
    gpu_info = "\n".join(gpu_infos)
    default_batch_size = min(mem) // 2
else:
    gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
    default_batch_size = 1
gpus = "-".join([i[0] for i in gpu_infos])
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
import soundfile as sf
from fairseq import checkpoint_utils
import gradio as gr
import logging
from vc_infer_pipeline import VC
from config import Config

config = Config()
# from trainset_preprocess_pipeline import PreProcess
logging.getLogger("numba").setLevel(logging.WARNING)

hubert_model = None

def load_hubert():
    global hubert_model
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    hubert_model.eval()


weight_root = "weights"
index_root = "logs"
names = []
for name in os.listdir(weight_root):
    if name.endswith(".pth"):
        names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
    for name in files:
        if name.endswith(".index") and "trained" not in name:
            index_paths.append("%s/%s" % (root, name))



def vc_single(

    sid,

    input_audio_path,

    f0_up_key,

    f0_file,

    f0_method,

    file_index,

    #file_index2,

    # file_big_npy,

    index_rate,

    filter_radius,

    resample_sr,

    rms_mix_rate,

    protect,

    crepe_hop_length,

):  # spk_item, input_audio0, vc_transform0,f0_file,f0method0
    global tgt_sr, net_g, vc, hubert_model, version
    if input_audio_path is None:
        return "You need to upload an audio", None
    f0_up_key = int(f0_up_key)
    try:
        audio = load_audio(input_audio_path, 16000, DoFormant, Quefrency, Timbre)
        audio_max = np.abs(audio).max() / 0.95
        if audio_max > 1:
            audio /= audio_max
        times = [0, 0, 0]
        if hubert_model == None:
            load_hubert()
        if_f0 = cpt.get("f0", 1)
        file_index = (
            (
                file_index.strip(" ")
                .strip('"')
                .strip("\n")
                .strip('"')
                .strip(" ")
                .replace("trained", "added")
            )
        )  # 防止小白写错,自动帮他替换掉
        # file_big_npy = (
        #     file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
        # )
        audio_opt = vc.pipeline(
            hubert_model,
            net_g,
            sid,
            audio,
            input_audio_path,
            times,
            f0_up_key,
            f0_method,
            file_index,
            # file_big_npy,
            index_rate,
            if_f0,
            filter_radius,
            tgt_sr,
            resample_sr,
            rms_mix_rate,
            version,
            protect,
            crepe_hop_length,
            f0_file=f0_file,
        )
        if resample_sr >= 16000 and tgt_sr != resample_sr:
            tgt_sr = resample_sr
        index_info = (
            "Using index:%s." % file_index
            if os.path.exists(file_index)
            else "Index not used."
        )
        return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
            index_info,
            times[0],
            times[1],
            times[2],
        ), (tgt_sr, audio_opt)
    except:
        info = traceback.format_exc()
        print(info)
        return info, (None, None)


def vc_multi(

    sid,

    dir_path,

    opt_root,

    paths,

    f0_up_key,

    f0_method,

    file_index,

    file_index2,

    # file_big_npy,

    index_rate,

    filter_radius,

    resample_sr,

    rms_mix_rate,

    protect,

    format1,

    crepe_hop_length,

):
    try:
        dir_path = (
            dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
        )  # 防止小白拷路径头尾带了空格和"和回车
        opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
        os.makedirs(opt_root, exist_ok=True)
        try:
            if dir_path != "":
                paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)]
            else:
                paths = [path.name for path in paths]
        except:
            traceback.print_exc()
            paths = [path.name for path in paths]
        infos = []
        for path in paths:
            info, opt = vc_single(
                sid,
                path,
                f0_up_key,
                None,
                f0_method,
                file_index,
                # file_big_npy,
                index_rate,
                filter_radius,
                resample_sr,
                rms_mix_rate,
                protect,
                crepe_hop_length
            )
            if "Success" in info:
                try:
                    tgt_sr, audio_opt = opt
                    if format1 in ["wav", "flac"]:
                        sf.write(
                            "%s/%s.%s" % (opt_root, os.path.basename(path), format1),
                            audio_opt,
                            tgt_sr,
                        )
                    else:
                        path = "%s/%s.wav" % (opt_root, os.path.basename(path))
                        sf.write(
                            path,
                            audio_opt,
                            tgt_sr,
                        )
                        if os.path.exists(path):
                            os.system(
                                "ffmpeg -i %s -vn %s -q:a 2 -y"
                                % (path, path[:-4] + ".%s" % format1)
                            )
                except:
                    info += traceback.format_exc()
            infos.append("%s->%s" % (os.path.basename(path), info))
            yield "\n".join(infos)
        yield "\n".join(infos)
    except:
        yield traceback.format_exc()

# 一个选项卡全局只能有一个音色
def get_vc(sid):
    global n_spk, tgt_sr, net_g, vc, cpt, version
    if sid == "" or sid == []:
        global hubert_model
        if hubert_model != None:  # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
            print("clean_empty_cache")
            del net_g, n_spk, vc, hubert_model, tgt_sr  # ,cpt
            hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            ###楼下不这么折腾清理不干净
            if_f0 = cpt.get("f0", 1)
            version = cpt.get("version", "v1")
            if version == "v1":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs256NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
            elif version == "v2":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs768NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
            del net_g, cpt
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            cpt = None
        return {"visible": False, "__type__": "update"}
    person = "%s/%s" % (weight_root, sid)
    print("loading %s" % person)
    cpt = torch.load(person, map_location="cpu")
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
    if_f0 = cpt.get("f0", 1)
    version = cpt.get("version", "v1")
    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
    del net_g.enc_q
    print(net_g.load_state_dict(cpt["weight"], strict=False))
    net_g.eval().to(config.device)
    if config.is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()
    vc = VC(tgt_sr, config)
    n_spk = cpt["config"][-3]
    return {"visible": False, "maximum": n_spk, "__type__": "update"}


def change_choices():
    names = []
    for name in os.listdir(weight_root):
        if name.endswith(".pth"):
            names.append(name)
    index_paths = []
    for root, dirs, files in os.walk(index_root, topdown=False):
        for name in files:
            if name.endswith(".index") and "trained" not in name:
                index_paths.append("%s/%s" % (root, name))
    return {"choices": sorted(names), "__type__": "update"}, {
        "choices": sorted(index_paths),
        "__type__": "update",
    }


def clean():
    return {"value": "", "__type__": "update"}


sr_dict = {
    "32k": 32000,
    "40k": 40000,
    "48k": 48000,
}


def if_done(done, p):
    while 1:
        if p.poll() == None:
            sleep(0.5)
        else:
            break
    done[0] = True


def if_done_multi(done, ps):
    while 1:
        # poll==None代表进程未结束
        # 只要有一个进程未结束都不停
        flag = 1
        for p in ps:
            if p.poll() == None:
                flag = 0
                sleep(0.5)
                break
        if flag == 1:
            break
    done[0] = True





global log_interval


def set_log_interval(exp_dir, batch_size12):
    log_interval = 1

    folder_path = os.path.join(exp_dir, "1_16k_wavs")

    if os.path.exists(folder_path) and os.path.isdir(folder_path):
        wav_files = [f for f in os.listdir(folder_path) if f.endswith(".wav")]
        if wav_files:
            sample_size = len(wav_files)
            log_interval = math.ceil(sample_size / batch_size12)
            if log_interval > 1:
                log_interval += 1
    return log_interval


    




def whethercrepeornah(radio):
    mango = True if radio == 'mangio-crepe' or radio == 'mangio-crepe-tiny' else False
    return ({"visible": mango, "__type__": "update"})

#                    ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
def change_info_(ckpt_path):
    if (
        os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log"))
        == False
    ):
        return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
    try:
        with open(
            ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
        ) as f:
            info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
            sr, f0 = info["sample_rate"], info["if_f0"]
            version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
            return sr, str(f0), version
    except:
        traceback.print_exc()
        return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}


from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM


def export_onnx(ModelPath, ExportedPath, MoeVS=True):
    cpt = torch.load(ModelPath, map_location="cpu")
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
    hidden_channels = 256 if cpt.get("version","v1")=="v1"else 768#cpt["config"][-2]  # hidden_channels,为768Vec做准备

    test_phone = torch.rand(1, 200, hidden_channels)  # hidden unit
    test_phone_lengths = torch.tensor([200]).long()  # hidden unit 长度(貌似没啥用)
    test_pitch = torch.randint(size=(1, 200), low=5, high=255)  # 基频(单位赫兹)
    test_pitchf = torch.rand(1, 200)  # nsf基频
    test_ds = torch.LongTensor([0])  # 说话人ID
    test_rnd = torch.rand(1, 192, 200)  # 噪声(加入随机因子)

    device = "cpu"  # 导出时设备(不影响使用模型)


    net_g = SynthesizerTrnMsNSFsidM(
        *cpt["config"], is_half=False,version=cpt.get("version","v1")
    )  # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
    net_g.load_state_dict(cpt["weight"], strict=False)
    input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
    output_names = [
        "audio",
    ]
    # net_g.construct_spkmixmap(n_speaker) 多角色混合轨道导出
    torch.onnx.export(
        net_g,
        (
            test_phone.to(device),
            test_phone_lengths.to(device),
            test_pitch.to(device),
            test_pitchf.to(device),
            test_ds.to(device),
            test_rnd.to(device),
        ),
        ExportedPath,
        dynamic_axes={
            "phone": [1],
            "pitch": [1],
            "pitchf": [1],
            "rnd": [2],
        },
        do_constant_folding=False,
        opset_version=16,
        verbose=False,
        input_names=input_names,
        output_names=output_names,
    )
    return "Finished"

#region RVC WebUI App

def get_presets():
    data = None
    with open('../inference-presets.json', 'r') as file:
        data = json.load(file)
    preset_names = []
    for preset in data['presets']:
        preset_names.append(preset['name'])
    
    return preset_names

def change_choices2():
    audio_files=[]
    for filename in os.listdir("./audios"):
        if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
            audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
    return {"choices": sorted(audio_files), "__type__": "update"}, {"__type__": "update"}
    
audio_files=[]
for filename in os.listdir("./audios"):
    if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
        audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
        
def get_index():
    if check_for_name() != '':
        chosen_model=sorted(names)[0].split(".")[0]
        logs_path="./logs/"+chosen_model
        if os.path.exists(logs_path):
            for file in os.listdir(logs_path):
                if file.endswith(".index"):
                    return os.path.join(logs_path, file)
            return ''
        else:
            return ''
        
def get_indexes():
    indexes_list=[]
    for dirpath, dirnames, filenames in os.walk("./logs/"):
        for filename in filenames:
            if filename.endswith(".index"):
                indexes_list.append(os.path.join(dirpath,filename))
    if len(indexes_list) > 0:
        return indexes_list
    else:
        return ''
        
def get_name():
    if len(audio_files) > 0:
        return sorted(audio_files)[0]
    else:
        return ''
        
def save_to_wav(record_button):
    if record_button is None:
        pass
    else:
        path_to_file=record_button
        new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
        new_path='./audios/'+new_name
        shutil.move(path_to_file,new_path)
        return new_path
    
def save_to_wav2(dropbox):
    file_path=dropbox.name
    shutil.move(file_path,'./audios')
    return os.path.join('./audios',os.path.basename(file_path))
    
def match_index(sid0):
    folder=sid0.split(".")[0]
    parent_dir="./logs/"+folder
    if os.path.exists(parent_dir):
        for filename in os.listdir(parent_dir):
            if filename.endswith(".index"):
                index_path=os.path.join(parent_dir,filename)
                return index_path
    else:
        return ''
                
def check_for_name():
    if len(names) > 0:
        return sorted(names)[0]
    else:
        return ''
            
def download_from_url(url, model):
    if url == '':
        return "URL cannot be left empty."
    if model =='':
        return "You need to name your model. For example: My-Model"
    url = url.strip()
    zip_dirs = ["zips", "unzips"]
    for directory in zip_dirs:
        if os.path.exists(directory):
            shutil.rmtree(directory)
    os.makedirs("zips", exist_ok=True)
    os.makedirs("unzips", exist_ok=True)
    zipfile = model + '.zip'
    zipfile_path = './zips/' + zipfile
    try:
        if "drive.google.com" in url:
            subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
        elif "mega.nz" in url:
            m = Mega()
            m.download_url(url, './zips')
        else:
            subprocess.run(["wget", url, "-O", zipfile_path])
        for filename in os.listdir("./zips"):
            if filename.endswith(".zip"):
                zipfile_path = os.path.join("./zips/",filename)
                shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
            else:
                return "No zipfile found."
        for root, dirs, files in os.walk('./unzips'):
            for file in files:
                file_path = os.path.join(root, file)
                if file.endswith(".index"):
                    os.mkdir(f'./logs/{model}')
                    shutil.copy2(file_path,f'./logs/{model}')
                elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
                    shutil.copy(file_path,f'./weights/{model}.pth')
        shutil.rmtree("zips")
        shutil.rmtree("unzips")
        return "Success."
    except:
        return "There's been an error."
def success_message(face):
    return f'{face.name} has been uploaded.', 'None'
def mouth(size, face, voice, faces):
    if size == 'Half':
        size = 2
    else:
        size = 1
    if faces == 'None':
        character = face.name
    else:
        if faces == 'Ben Shapiro':
            character = '/content/wav2lip-HD/inputs/ben-shapiro-10.mp4'
        elif faces == 'Andrew Tate':
            character = '/content/wav2lip-HD/inputs/tate-7.mp4'
    command = "python inference.py " \
            "--checkpoint_path checkpoints/wav2lip.pth " \
            f"--face {character} " \
            f"--audio {voice} " \
            "--pads 0 20 0 0 " \
            "--outfile /content/wav2lip-HD/outputs/result.mp4 " \
            "--fps 24 " \
            f"--resize_factor {size}"
    process = subprocess.Popen(command, shell=True, cwd='/content/wav2lip-HD/Wav2Lip-master')
    stdout, stderr = process.communicate()
    return '/content/wav2lip-HD/outputs/result.mp4', 'Animation completed.'
eleven_voices = ['Adam','Antoni','Josh','Arnold','Sam','Bella','Rachel','Domi','Elli']
eleven_voices_ids=['pNInz6obpgDQGcFmaJgB','ErXwobaYiN019PkySvjV','TxGEqnHWrfWFTfGW9XjX','VR6AewLTigWG4xSOukaG','yoZ06aMxZJJ28mfd3POQ','EXAVITQu4vr4xnSDxMaL','21m00Tcm4TlvDq8ikWAM','AZnzlk1XvdvUeBnXmlld','MF3mGyEYCl7XYWbV9V6O']
chosen_voice = dict(zip(eleven_voices, eleven_voices_ids))

def stoptraining(mim): 
    if int(mim) == 1:
        try:
            CSVutil('csvdb/stop.csv', 'w+', 'stop', 'True')
            os.kill(PID, signal.SIGTERM)
        except Exception as e:
            print(f"Couldn't click due to {e}")
    return (
        {"visible": False, "__type__": "update"}, 
        {"visible": True, "__type__": "update"},
    )


def elevenTTS(xiapi, text, id, lang):
    if xiapi!= '' and id !='': 
        choice = chosen_voice[id]
        CHUNK_SIZE = 1024
        url = f"https://api.elevenlabs.io/v1/text-to-speech/{choice}"
        headers = {
        "Accept": "audio/mpeg",
        "Content-Type": "application/json",
        "xi-api-key": xiapi
        }
        if lang == 'en':
            data = {
            "text": text,
            "model_id": "eleven_monolingual_v1",
            "voice_settings": {
            "stability": 0.5,
            "similarity_boost": 0.5
            }
            }
        else:
            data = {
            "text": text,
            "model_id": "eleven_multilingual_v1",
            "voice_settings": {
            "stability": 0.5,
            "similarity_boost": 0.5
            }
            }

        response = requests.post(url, json=data, headers=headers)
        with open('./temp_eleven.mp3', 'wb') as f:
          for chunk in response.iter_content(chunk_size=CHUNK_SIZE):
              if chunk:
                  f.write(chunk)
        aud_path = save_to_wav('./temp_eleven.mp3')
        return aud_path, aud_path
    else:
        tts = gTTS(text, lang=lang)
        tts.save('./temp_gTTS.mp3')
        aud_path = save_to_wav('./temp_gTTS.mp3')
        return aud_path, aud_path


    
def zip_downloader(model):
    if not os.path.exists(f'./weights/{model}.pth'):
        return {"__type__": "update"}, f'Make sure the Voice Name is correct. I could not find {model}.pth'
    index_found = False
    for file in os.listdir(f'./logs/{model}'):
        if file.endswith('.index') and 'added' in file:
            log_file = file
            index_found = True
    if index_found:
        return [f'./weights/{model}.pth', f'./logs/{model}/{log_file}'], "Done"
    else:
        return f'./weights/{model}.pth', "Could not find Index file."