Spaces:
Running
Running
File size: 1,412 Bytes
a9d15f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import gradio as gr
import requests
import json
import os
# Hugging Face Inference API setup
API_URL = "https://api-inference.huggingface.co/models/Benevolent/PonyDiffusionV10"
HF_API_TOKEN = os.getenv("HF_API_TOKEN") # Get token from environment variable
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return json.loads(response.content)
# Function to call the HF Inference API
def generate_image(prompt):
payload = {
"inputs": prompt,
}
response = query(payload)
if 'error' in response:
return f"Error: {response['error']}"
# Check for the generated image
if isinstance(response, list) and len(response) > 0 and "generated_image" in response[0]:
return response[0]["generated_image"] # Base64 encoded image
return "No image returned from model"
# Gradio Blocks Web UI
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("# PonyDiffusion V10 Text-to-Image Generator")
with gr.Row():
prompt = gr.Textbox(label="Enter a prompt for the image")
with gr.Row():
generate_button = gr.Button("Generate Image")
output_image = gr.Image()
# When generate_button is clicked, call generate_image
generate_button.click(fn=generate_image, inputs=prompt, outputs=output_image)
# Launch the app
demo.launch()
|