Spaces:
No application file
No application file
File size: 37,143 Bytes
73f4c20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 |
# micro lib to implement the watermarking extensions to LM generation
# as well as utils for eval/validaiton
from typing import List, Optional, Callable
import time
import random
import math
import torch
import numpy as np
from torch import Tensor
from tokenizers import Tokenizer
from transformers import LogitsProcessor, LogitsProcessorList, set_seed
def tokenize_and_truncate(example: dict,
completion_length: int = None,
prompt_length: int = None,
hf_model_name: str = None,
tokenizer = None,
model_max_seq_len: int = 4096):
"""take hf dataset entry and preprocess it for completion by a model"""
assert hf_model_name is not None, "need model name to know whether to adjust wrt special tokens"
assert "text" in example, "expects 'text' field to be present"
# tokenize
inputs = tokenizer.encode(example["text"], return_tensors="pt", truncation=True, max_length=model_max_seq_len)
example.update({"untruncated_inputs": inputs})
if (completion_length is not None) and (prompt_length is None):
# leave at least one token as prefix # FIXME I think plus 1 since 0 is start tok
slice_length = min(inputs.shape[1]-1, completion_length)
elif (prompt_length is not None) and (completion_length is None):
desired_comp_len = (inputs.shape[1]-1) - prompt_length
slice_length = desired_comp_len if desired_comp_len > 0 else 0
else:
raise ValueError((f"Can only tokenize and truncate based on either the desired prompt length or desired completion length,",
f" but got completion_length:{completion_length},prompt_length:{prompt_length}"))
# truncate
inputs = inputs[:,:inputs.shape[1]-slice_length]
# logic depending on special tokens for the model
if "t5" in hf_model_name or "T0" in hf_model_name:
inputs[0,-1] = 1
# else: pass
example.update({"inputs": inputs})
return example
class BlacklistLogitsProcessor(LogitsProcessor):
"""
[`LogitsProcessor`] that enforces that specified sequences will never be sampled.
Args:
bad_words_ids (`List[List[int]]`):
List of list of token ids that are not allowed to be generated. In order to get the token ids of the words
that should not appear in the generated text, use `tokenizer(bad_words, add_prefix_space=True,
add_special_tokens=False).input_ids`.
eos_token_id (`int`):
The id of the *end-of-sequence* token.
"""
def __init__(self,
bad_words_ids: List[List[int]],
eos_token_id: int,
vocab: list[int],
vocab_size: int,
bl_proportion: float=0.5,
bl_logit_bias: float=1.0,
bl_type: str = "hard", # "soft"
initial_seed: int=None,
dynamic_seed: str=None, # "initial", "markov_1", None
store_bl_ids: bool=True,
store_spike_ents: bool = False,
noop_blacklist: bool = False,
):
self.vocab = vocab
self.vocab_size = vocab_size
self.bl_proportion = bl_proportion
self.bl_logit_bias = bl_logit_bias
self.bl_type = bl_type
if initial_seed is None:
self.initial_seed = None
assert dynamic_seed != "initial"
else:
random.seed(initial_seed)
self.initial_seed = initial_seed
self.dynamic_seed = dynamic_seed
self.eos_token_id = eos_token_id
# self.bad_words_id_length_1 = self._prepare_bad_words(bad_words_ids)
self.bad_words_mask: Optional[torch.LongTensor] = None
self.store_bl_ids = store_bl_ids
self.bl_ids = None
self.store_spike_ents = store_spike_ents
self.spike_entropies = None
# hack to replace this with an approximation of infinite bias
# so that the expectation coefficient will come out to 1.0
if self.bl_type == "hard":
self.bl_logit_bias = 10000 # FIXME to a value that is actually close to the largest soft watermark used
alpha = torch.exp(torch.tensor(self.bl_logit_bias)).item()
# gamma = self.bl_proportion
gamma = 1.0-self.bl_proportion
self.alpha = alpha
self.gamma = gamma
self.z_value = ((1-gamma)*(alpha-1))/(1-gamma+(alpha*gamma))
self.expected_wl_coef = (gamma*alpha)/(1-gamma+(alpha*gamma))
# catch for overflow when bias is "infinite"
if self.alpha == torch.inf:
self.z_value = 1.0
self.expected_wl_coef = 1.0
self.noop_blacklist = noop_blacklist
if self.noop_blacklist: print(f"Blacklist processor for accounting only, no rescoring of logits")
self.g_cuda = None
self.large_prime = 15485863
@property
def blacklisted_ids(self):
assert self.store_bl_ids, "Need to instantiate processor with `store_bl_ids` to be able to retrieve them later"
# flatten the each indexes blacklist
l_of_bl_ids = [[] for _ in range(len(self.bl_ids))]
for b_idx, batch in enumerate(self.bl_ids):
for l_of_l, seed in batch:
bl_ids = [l[0] for l in l_of_l] # this was the main line, maybe unnecessary now?
l_of_bl_ids[b_idx].append((bl_ids,seed))
return l_of_bl_ids
def get_and_clear_stored_bl_ids(self):
old_bl_ids = self.bl_ids
self.bl_ids = None
return old_bl_ids
def get_spike_entropies(self):
spike_ents = [[] for _ in range(len(self.spike_entropies))]
for b_idx, ent_tensor_list in enumerate(self.spike_entropies):
for ent_tensor in ent_tensor_list:
spike_ents[b_idx].append(ent_tensor.item())
return spike_ents
def get_and_clear_stored_spike_ents(self):
spike_ents = self.get_spike_entropies()
self.spike_entropies = None
return spike_ents
def compute_spike_entropy(self, scores):
# precomputed z value in init
probs = scores.softmax(dim=-1)
denoms = 1+(self.z_value*probs)
renormed_probs = probs / denoms
sum_renormed_probs = renormed_probs.sum()
return sum_renormed_probs
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
self.bad_words_id_length_1 = [None for _ in range(input_ids.shape[0])]
if self.g_cuda is None:
self.g_cuda = torch.Generator(device=input_ids.device)
for b_idx in range(input_ids.shape[0]):
if self.dynamic_seed == "initial":
self.g_cuda.manual_seed(self.large_prime*self.initial_seed)
elif self.dynamic_seed == "markov_1":
self.g_cuda.manual_seed(self.large_prime*input_ids[b_idx][-1].item())
elif self.dynamic_seed is None:
# let the rng evolve naturally - this is not a realistic setting
pass
bl_ct = int(self.vocab_size*self.bl_proportion)
blacklist_ids = torch.randperm(self.vocab_size, device=input_ids.device, generator=self.g_cuda)[:bl_ct] # ty Yuxin :]
if self.store_bl_ids:
if self.bl_ids is None: self.bl_ids = [[] for _ in range(input_ids.shape[0])]
self.bl_ids[b_idx].append((blacklist_ids,input_ids.tolist()[b_idx][-1]))
if self.store_spike_ents:
if self.spike_entropies is None: self.spike_entropies = [[] for _ in range(input_ids.shape[0])]
self.spike_entropies[b_idx].append(self.compute_spike_entropy(scores[b_idx]))
# self.bad_words_id_length_1[b_idx] = self._prepare_bad_words(blacklist_ids)
# this logic may not really be necessary for our usecase
self.bad_words_id_length_1[b_idx] = blacklist_ids
if not self.noop_blacklist:
self.bad_words_mask = self._calc_curr_bad_word_mask(scores)
scores = self._set_scores_to_inf_for_banned_tokens(scores)
return scores
def _prepare_bad_words(self, bad_words_ids: List[List[int]]) -> list[int]:
bad_words_ids = list(filter(lambda bad_token_seq: bad_token_seq != [self.eos_token_id], bad_words_ids))
return bad_words_ids
# used to have more logic, not used now
def _calc_curr_bad_word_mask(self, scores: torch.FloatTensor) -> torch.BoolTensor:
bad_words_mask = torch.zeros_like(scores)
for b_idx in range(len(self.bad_words_id_length_1)):
bad_words_mask[b_idx][self.bad_words_id_length_1[b_idx]] = 1
final_mask = bad_words_mask.bool()
return final_mask
def _set_scores_to_inf_for_banned_tokens(
self, scores: torch.Tensor
) -> torch.Tensor:
"""
Modifies the scores in place by setting the banned token positions to `-inf`. Banned token is expected to be a
list of list of banned tokens to ban in the format [[batch index, vocabulary position],...
Args:
scores: logits distribution of shape (batch size, vocabulary size)
banned_tokens: list of list of tokens to ban of length (batch_size)
# NOTE^^ Omitted logic for dynamic mask based on multi-token ban words
"""
if self.bl_type == "hard":
scores = scores.masked_fill(self.bad_words_mask, -float("inf"))
elif self.bl_type == "soft":
whitelist_mask = torch.logical_not(self.bad_words_mask)
blacklist_mask = self.bad_words_mask
scores[whitelist_mask] = scores[whitelist_mask] + self.bl_logit_bias
# scores[blacklist_mask] = scores[blacklist_mask] - self.bl_logit_bias # additive only
else:
raise NotImplementedError(f"unrecognized bl type {self.bl_type}!")
return scores
def score_sequence(inputs: Tensor = None,
outputs: Tensor = None,
tokenizer: Tokenizer = None,
# logits_processor: LogitsProcessor = None,
initial_seed: int = None,
dynamic_seed: str = None,
bl_proportion: float = None,
use_cuda: bool = True,
record_hits: bool = False,
debug: bool = True,
# trim_tokens: int = 2,
):
assert (inputs is not None) and \
(outputs is not None) and \
(tokenizer is not None),"output tensor, tokenizer, and bl params req'd"
# (logits_processor is not None),
vocabulary = list(tokenizer.get_vocab().values())
vocab_size = len(vocabulary)
model_generations = outputs.tolist()[0] # these are tensors unpack once for speed
# toks_generated = model_generations[num_orig_input_tokens:]
toks_generated = model_generations
num_toks_generated = len(toks_generated)
# num_toks_to_trim = trim_tokens*2
# if (num_toks_generated-num_toks_to_trim > 0) == False:
# return -1, -1
# assert num_toks_generated > num_toks_to_trim, f"Need more than {num_toks_to_trim} toks total since we trim start and end a bit."
# toks_generated = toks_generated[trim_tokens:-trim_tokens]
if initial_seed is not None:
random.seed(initial_seed)
device = (torch.device("cuda") if use_cuda else torch.device("cpu"))
g_cuda = torch.Generator(device=device)
large_prime = 15485863
bl_hits, hit_list = 0, []
prev_token = inputs[0][-1].item()
# prev_token = toks_generated[0] # haven't decided whether this edge effect matters
# for idx,tok_gend in enumerate(toks_generated[1:]):
for idx,tok_gend in enumerate(toks_generated):
# prev_token = model_generations[num_orig_input_tokens+idx-1]
if dynamic_seed == "initial":
g_cuda.manual_seed(large_prime*initial_seed)
elif dynamic_seed == "markov_1":
g_cuda.manual_seed(large_prime*prev_token)
elif dynamic_seed is None:
# let the rng evolve naturally - this is not a realistic setting
pass
bl_ct = int(vocab_size*bl_proportion)
posthoc_blacklist = torch.randperm(vocab_size, device=device, generator=g_cuda)[:bl_ct] # ty Yuxin :]
tok_in_ph_bl = tok_gend in posthoc_blacklist
if tok_in_ph_bl:
bl_hits += 1
hit_list.append(True)
else:
hit_list.append(False)
if debug:
decoded_token = tokenizer.decode(tok_gend, skip_special_tokens=True)
print(f"Token generated: '{decoded_token}' was in the blacklist {tok_in_ph_bl}")
prev_token = tok_gend
if debug:
print(f"wl hits / num tokens : {num_toks_generated-bl_hits}/{num_toks_generated} = {(num_toks_generated-bl_hits)/num_toks_generated:.02f}")
print(f"bl hits / num tokens : {bl_hits}/{num_toks_generated} = {bl_hits/num_toks_generated:.02f}")
if record_hits:
return bl_hits, num_toks_generated, hit_list
# bl_fraction = bl_hits/num_toks_generated
return bl_hits, num_toks_generated
def tokenize_for_generation(example: dict,
idx: int,
max_new_tokens: int=None,
min_prompt_tokens: int=None,
hf_model_name : str=None,
tokenizer: Tokenizer=None,
model: torch.nn.Module=None):
# preprocessing, generation & scoring
assert isinstance(example, dict), "Expect no batch dimension currently!"
# preprocess for model generation/completion
example = tokenize_and_truncate(example,
completion_length=max_new_tokens,
prompt_length=min_prompt_tokens,
hf_model_name=hf_model_name,
tokenizer=tokenizer,
# model_max_seq_len=model.config.max_position_embeddings)
model_max_seq_len=None)
inputs = example["inputs"]
# for calculating the baseline violation rate across the "gold" completion
untruncated_inputs = example["untruncated_inputs"]
# decode the preprocessed input to store for audit
re_decoded_input = tokenizer.batch_decode(inputs, skip_special_tokens=True)[0]
example.update({"truncated_input":re_decoded_input})
# also decode the original suffix of the input for audit as the baseline
decoded_untruncated_input = tokenizer.batch_decode(untruncated_inputs, skip_special_tokens=True)[0]
example.update({"baseline_completion":decoded_untruncated_input.replace(re_decoded_input,"")})
example.update({
"orig_sample_length" : untruncated_inputs.shape[1],
"prompt_length" : inputs.shape[1],
"real_completion_length" : untruncated_inputs.shape[1] - inputs.shape[1],
})
return example
def generate_completions(example: dict,
idx: int,
max_new_tokens: int=None,
hf_model_name : str=None,
tokenizer: Tokenizer=None,
model: torch.nn.Module=None,
no_bl_partial: Callable=None,
w_bl_partial: Callable=None,
# return_logits: bool=False,
bl_processor_list: LogitsProcessorList=None):
# preprocessing, generation & scoring
assert isinstance(example, dict), "Expect no batch dimension currently!"
# # preprocess for model generation/completion
# example = tokenize_and_truncate(example,
# completion_length=max_new_tokens,
# hf_model_name=hf_model_name,
# tokenizer=tokenizer,
# model_max_seq_len=model.config.max_position_embeddings)
# inputs = example["inputs"]
# # for calculating the baseline violation rate across the "gold" completion
# untruncated_inputs = example["untruncated_inputs"]
# # decode the preprocessed input to store for audit
# re_decoded_input = tokenizer.batch_decode(inputs, skip_special_tokens=True)[0]
# example.update({"truncated_input":re_decoded_input})
# # also decode the original suffix of the input for audit as the baseline
# decoded_untruncated_input = tokenizer.batch_decode(untruncated_inputs, skip_special_tokens=True)[0]
# example.update({"baseline_completion":decoded_untruncated_input.replace(re_decoded_input,"")})
inputs = example["inputs"]
re_decoded_input = example["truncated_input"]
# call the vanilla and watermarked generation function wrappers with the preprocessed inputs
with torch.no_grad():
samples_taken = 0
max_retries = 10
success = False
while (success is False) and (samples_taken < max_retries):
samples_taken += 1
# set_seed(1234) # debugging the error when using sampling # leaving this off for now
start_generation = time.time()
outputs_no_bl = no_bl_partial(inputs.to(model.device))
example["no_bl_gen_time"] = time.time() - start_generation
# set_seed(1234) # debugging the error when using sampling
start_generation = time.time()
outputs_w_bl = w_bl_partial(inputs.to(model.device))
example["w_bl_gen_time"] = time.time() - start_generation
# if return_logits:
# output_no_bl_dict = outputs_no_bl
# logits_no_bl = output_no_bl_dict.scores
# outputs_no_bl = output_no_bl_dict.sequences
# example["logits_no_bl"] = logits_no_bl
# output_w_bl_dict = outputs_w_bl
# logits_w_bl = output_w_bl_dict.scores
# outputs_w_bl = output_w_bl_dict.sequences
# example["logits_w_bl"] = logits_w_bl
if bl_processor_list:
if bl_processor_list[0].bl_ids is not None:
example["bl_ids"] = bl_processor_list[0].get_and_clear_stored_bl_ids()
if bl_processor_list[0].spike_entropies is not None:
example["spike_entropies"] = bl_processor_list[0].get_and_clear_stored_spike_ents()
try:
# decode and store the new generations for auditing
no_bl_decoded_output = tokenizer.batch_decode(outputs_no_bl, skip_special_tokens=True)[0]
example.update({"no_bl_output":no_bl_decoded_output.replace(re_decoded_input,"")})
w_bl_decoded_output = tokenizer.batch_decode(outputs_w_bl, skip_special_tokens=True)[0]
example.update({"w_bl_output":w_bl_decoded_output.replace(re_decoded_input,"")})
success = True
except:
# log what happened
print(f"Error while trying to decode the outputs of the model...")
if samples_taken == 1:
print(f"truncated_input: {inputs.tolist()}")
print(f"Result of attempt {samples_taken}")
print(f"shape outputs_no_bl: {outputs_no_bl.shape}")
no_bl_toks = outputs_no_bl.tolist()[0]
print(f"outputs_no_bl: {no_bl_toks}")
print(f"outputs_no_bl min: {min(no_bl_toks)}")
print(f"outputs_no_bl max: {max(no_bl_toks)}")
print(f"shape outputs_w_bl: {outputs_w_bl.shape}")
w_bl_toks = outputs_w_bl.tolist()[0]
print(f"outputs_w_bl: {w_bl_toks}")
print(f"outputs_w_bl min: {min(w_bl_toks)}")
print(f"outputs_w_bl max: {max(w_bl_toks)}")
if success is False:
print(f"Unable to get both a no_bl and w_bl output that were decodeable after {samples_taken} tries, returning empty strings.")
example.update({"no_bl_output":""})
example.update({"w_bl_output":""})
if bl_processor_list:
if bl_processor_list[0].bl_ids is not None:
example["bl_ids"] = []
if bl_processor_list[0].spike_entropies is not None:
example["spike_entropies"] = []
# Able to get lengths in here by checking
# truncated input shape versus the output shape
example.update({
# "baseline_num_tokens_generated" : untruncated_inputs.shape[1] - inputs.shape[1], # want this earlier now
"no_bl_num_tokens_generated" : outputs_no_bl.shape[1] - inputs.shape[1],
"w_bl_num_tokens_generated" : outputs_w_bl.shape[1] - inputs.shape[1]
})
example.update({
"no_bl_sec_per_tok" : example["no_bl_gen_time"]/example["no_bl_num_tokens_generated"],
"no_bl_tok_per_sec" : example["no_bl_num_tokens_generated"]/example["no_bl_gen_time"],
"w_bl_sec_per_tok" : example["w_bl_gen_time"]/example["w_bl_num_tokens_generated"],
"w_bl_tok_per_sec" : example["w_bl_num_tokens_generated"]/example["w_bl_gen_time"],
})
# now done externally because these persist outside this func
# # remove any fields we don't need to keep
# del example["inputs"]
# del example["untruncated_inputs"]
return example
def compute_bl_metrics(example: dict,
idx: int,
hf_model_name: str = None,
tokenizer: Tokenizer=None,
initial_seed: int = None,
dynamic_seed: str = None,
bl_proportion: float = None,
use_cuda: bool = None,
record_hits: bool = False,
limit_output_tokens: int = 0):
# if example["idx"] == 3: breakpoint()
# okay need to catch an odd bug here and fix things
baseline_before = example["baseline_completion"]
example["baseline_completion"] = baseline_before.replace(example["truncated_input"][:-1],"")
if example["baseline_completion"] != baseline_before:
print("baseline input replacement bug occurred!")
no_bl_before = example["no_bl_output"]
example["no_bl_output"] = no_bl_before.replace(example["truncated_input"][:-1],"")
if example["no_bl_output"] != no_bl_before:
print("no_bl_output input replacement bug occurred!")
w_bl_before = example["w_bl_output"]
example["w_bl_output"] = w_bl_before.replace(example["truncated_input"][:-1],"")
if example["w_bl_output"] != w_bl_before:
print("w_bl_output input replacement bug occurred!")
if ("w_bl_output_attacked" in example):
w_bl_attacked_before = example["w_bl_output_attacked"]
example["w_bl_output_attacked"] = w_bl_attacked_before.replace(example["truncated_input"][:-1],"")
if example["w_bl_output_attacked"] != w_bl_attacked_before:
print("w_bl_output_attacked input replacement bug occurred!")
##########
# preprocess for model generation/completion
inputs = tokenize_and_truncate({"text":example["truncated_input"]},
completion_length=0,
hf_model_name=hf_model_name,
tokenizer=tokenizer)["inputs"]
baseline_outputs = tokenize_and_truncate({"text":example["baseline_completion"]},
completion_length=0,
hf_model_name=hf_model_name,
tokenizer=tokenizer)["inputs"][:,1:]
no_bl_outputs = tokenize_and_truncate({"text":example["no_bl_output"]},
completion_length=0,
hf_model_name=hf_model_name,
tokenizer=tokenizer)["inputs"][:,1:]
w_bl_outputs = tokenize_and_truncate({"text":example["w_bl_output"]},
completion_length=0,
hf_model_name=hf_model_name,
tokenizer=tokenizer)["inputs"][:,1:]
if "w_bl_output_attacked" in example:
w_bl_attacked_outputs = tokenize_and_truncate({"text":example["w_bl_output_attacked"]},
completion_length=0,
hf_model_name=hf_model_name,
tokenizer=tokenizer)["inputs"][:,1:]
else:
w_bl_attacked_outputs = None
if limit_output_tokens > 0:
example["orig_baseline_completion"] = example["baseline_completion"]
example["orig_real_completion_length"] = example["real_completion_length"]
baseline_outputs = baseline_outputs[:,:limit_output_tokens]
example["real_completion_length"] = baseline_outputs.shape[1]
example["baseline_completion"] = tokenizer.batch_decode(baseline_outputs, skip_special_tokens=True)[0]
example["orig_no_bl_output"] = example["no_bl_output"]
example["orig_no_bl_num_tokens_generated"] = example["no_bl_num_tokens_generated"]
no_bl_outputs = no_bl_outputs[:,:limit_output_tokens]
example["no_bl_num_tokens_generated"] = no_bl_outputs.shape[1]
example["no_bl_output"] = tokenizer.batch_decode(no_bl_outputs, skip_special_tokens=True)[0]
example["orig_w_bl_output"] = example["w_bl_output"]
example["orig_w_bl_num_tokens_generated"] = example["w_bl_num_tokens_generated"]
w_bl_outputs = w_bl_outputs[:,:limit_output_tokens]
example["w_bl_num_tokens_generated"] = w_bl_outputs.shape[1]
example["w_bl_output"] = tokenizer.batch_decode(w_bl_outputs, skip_special_tokens=True)[0]
example["orig_spike_entropies"] = example["spike_entropies"]
example["spike_entropies"] = [example["spike_entropies"][0][:limit_output_tokens]]
if "w_bl_output_attacked" in example:
# raise NotImplementedError("Havent thought what to do yet for this")
example["orig_w_bl_output_attacked"] = example["w_bl_output_attacked"]
# example["orig_w_bl_attacked_num_tokens_generated"] = example["w_bl_attacked_num_tokens_generated"]
w_bl_attacked_outputs = w_bl_attacked_outputs[:,:limit_output_tokens]
example["w_bl_attacked_num_tokens_generated"] = w_bl_attacked_outputs.shape[1]
example["w_bl_output_attacked"] = tokenizer.batch_decode(w_bl_attacked_outputs, skip_special_tokens=True)[0]
# score the 3 sequence completions/outputs wrt to bl hits
result = score_sequence(inputs=inputs,
outputs=baseline_outputs, # <-- real text completions
initial_seed=initial_seed,
dynamic_seed=dynamic_seed,
bl_proportion=bl_proportion,
tokenizer=tokenizer,
use_cuda=use_cuda,
record_hits=record_hits,
debug=False)
if record_hits:
bl_hits, num_toks_gend, hit_list = result
else:
bl_hits, num_toks_gend = result
example.update({"baseline_num_toks_gend_eq_0":(num_toks_gend == 0)})
# if num_toks_gend < 0.99*example["real_completion_length"]: breakpoint()
# if len(hit_list) < 0.99*example["real_completion_length"]: breakpoint()
if num_toks_gend == 0:
# print("No tokens generated, odd, avoiding div by zero and returning -1's")
wl_frac = -1
bl_frac = -1
else:
wl_frac = (num_toks_gend-bl_hits)/num_toks_gend
bl_frac = bl_hits/num_toks_gend
baseline_stats = {
"baseline_whitelist_fraction": wl_frac,
"baseline_blacklist_fraction": bl_frac
}
example.update(baseline_stats)
if record_hits: example.update({"baseline_hit_list":hit_list})
result = score_sequence(inputs=inputs,
outputs=no_bl_outputs, # <-- non-blacklisted version
initial_seed=initial_seed,
dynamic_seed=dynamic_seed,
bl_proportion=bl_proportion,
tokenizer=tokenizer,
record_hits=record_hits,
debug=False)
if record_hits:
bl_hits, num_toks_gend, hit_list = result
else:
bl_hits, num_toks_gend = result
example.update({"no_bl_num_toks_gend_eq_0":(num_toks_gend == 0)})
# if num_toks_gend < 0.99*example["no_bl_num_tokens_generated"]: breakpoint()
# if len(hit_list) < 0.99*example["no_bl_num_tokens_generated"]: breakpoint()
if num_toks_gend == 0:
# print("No tokens generated, odd, avoiding div by zero and returning -1's")
wl_frac = -1
bl_frac = -1
else:
wl_frac = (num_toks_gend-bl_hits)/num_toks_gend
bl_frac = bl_hits/num_toks_gend
no_bl_stats = {
"no_bl_whitelist_fraction": wl_frac,
"no_bl_blacklist_fraction": bl_frac
}
example.update(no_bl_stats)
if record_hits: example.update({"no_bl_hit_list":hit_list})
result = score_sequence(inputs=inputs,
outputs=w_bl_outputs, # <-- blacklisted version
initial_seed=initial_seed,
dynamic_seed=dynamic_seed,
bl_proportion=bl_proportion,
tokenizer=tokenizer,
record_hits=record_hits,
# breakpoint_on_hit=True, # banging head against wall
debug=False)
if record_hits:
bl_hits, num_toks_gend, hit_list = result
else:
bl_hits, num_toks_gend = result
example.update({"w_bl_num_toks_gend_eq_0":(num_toks_gend == 0)})
# if num_toks_gend < 0.99*example["w_bl_num_tokens_generated"]: breakpoint()
# if len(hit_list) < 0.99*example["w_bl_num_tokens_generated"]: breakpoint()
if num_toks_gend == 0:
# print("No tokens generated, odd, avoiding div by zero and returning -1's")
wl_frac = -1
bl_frac = -1
else:
wl_frac = (num_toks_gend-bl_hits)/num_toks_gend
bl_frac = bl_hits/num_toks_gend
w_bl_stats = {
"w_bl_whitelist_fraction": wl_frac,
"w_bl_blacklist_fraction": bl_frac
}
example.update(w_bl_stats)
if record_hits: example.update({"w_bl_hit_list":hit_list})
if w_bl_attacked_outputs is not None:
result = score_sequence(inputs=inputs,
outputs=w_bl_attacked_outputs, # <-- blacklisted but attacked version
initial_seed=initial_seed,
dynamic_seed=dynamic_seed,
bl_proportion=bl_proportion,
tokenizer=tokenizer,
record_hits=record_hits,
# breakpoint_on_hit=True, # banging head against wall
debug=False)
if record_hits:
bl_hits, num_toks_gend, hit_list = result
else:
bl_hits, num_toks_gend = result
example.update({"w_bl_attacked_num_toks_gend_eq_0":(num_toks_gend == 0)})
# if (num_toks_gend-bl_hits)/(num_toks_gend) < 1.0: breakpoint()
if num_toks_gend == 0:
# print("No tokens generated, odd, avoiding div by zero and returning -1's")
wl_frac = -1
bl_frac = -1
else:
wl_frac = (num_toks_gend-bl_hits)/num_toks_gend
bl_frac = bl_hits/num_toks_gend
w_bl_attacked_stats = {
"w_bl_attacked_num_tokens_generated": num_toks_gend,
"w_bl_attacked_whitelist_fraction": wl_frac,
"w_bl_attacked_blacklist_fraction": bl_frac
}
example.update(w_bl_attacked_stats)
if record_hits: example.update({"w_bl_attacked_hit_list":hit_list})
return example
def aggregate_bl_stats(example: dict, idx: int, stat_table: dict):
stat_table["baseline_stats"]["whitelist_fraction"] += example["baseline_stats"]["whitelist_fraction"]
stat_table["baseline_stats"]["blacklist_fraction"] += example["baseline_stats"]["blacklist_fraction"]
stat_table["w_bl_stats"]["whitelist_fraction"] += example["w_bl_stats"]["whitelist_fraction"]
stat_table["w_bl_stats"]["blacklist_fraction"] += example["w_bl_stats"]["blacklist_fraction"]
stat_table["no_bl_stats"]["whitelist_fraction"] += example["no_bl_stats"]["whitelist_fraction"]
stat_table["no_bl_stats"]["blacklist_fraction"] += example["no_bl_stats"]["blacklist_fraction"]
stat_table["num_examples"] += 1
return example
def compute_ppl_single(prefix_and_output_text = None,
output_text = None,
oracle_model_name = None,
oracle_model = None,
oracle_tokenizer = None):
with torch.no_grad():
tokd_prefix = tokenize_and_truncate({"text":prefix_and_output_text}, completion_length=0, hf_model_name=oracle_model_name, tokenizer=oracle_tokenizer, model_max_seq_len=oracle_model.config.max_position_embeddings)["inputs"]
tokd_inputs = tokd_prefix
# if only want to score the "generation" part we need the suffix tokenization length
tokd_suffix = tokenize_and_truncate({"text":output_text}, completion_length=0, hf_model_name=oracle_model_name, tokenizer=oracle_tokenizer, model_max_seq_len=oracle_model.config.max_position_embeddings)["inputs"]
tokd_inputs = tokd_inputs.to(oracle_model.device)
# make labels, mark if not including all positions
tokd_labels = tokd_inputs.clone().detach()
tokd_labels[:,:tokd_labels.shape[1]-tokd_suffix.shape[1]+1] = -100
outputs = oracle_model(input_ids=tokd_inputs, labels=tokd_labels)
loss = outputs.loss # avg CE loss all positions (except -100, TODO plz check that this is working correctly)
ppl = torch.tensor(math.exp(loss))
return loss.item(), ppl.item()
def evaluate_generation_fluency(example: dict,
idx: int,
oracle_model_name = None,
oracle_model = None,
oracle_tokenizer = None):
# pull out the required fields from the pipeline results
inputs_plus_baseline_output = f"{example['truncated_input']}{example['baseline_completion']}"
baseline_output = f"{example['baseline_completion']}"
inputs_plus_no_bl_output = f"{example['truncated_input']}{example['no_bl_output']}"
no_bl_output = f"{example['no_bl_output']}"
inputs_plus_w_bl_output = f"{example['truncated_input']}{example['w_bl_output']}"
w_bl_output = f"{example['w_bl_output']}"
# add metrics
loss, ppl = compute_ppl_single(inputs_plus_baseline_output, baseline_output, oracle_model_name, oracle_model, oracle_tokenizer)
example["baseline_loss"] = loss
example["baseline_ppl"] = ppl
loss, ppl = compute_ppl_single(inputs_plus_no_bl_output, no_bl_output, oracle_model_name, oracle_model, oracle_tokenizer)
example["no_bl_loss"] = loss
example["no_bl_ppl"] = ppl
loss, ppl = compute_ppl_single(inputs_plus_w_bl_output, w_bl_output, oracle_model_name, oracle_model, oracle_tokenizer)
example["w_bl_loss"] = loss
example["w_bl_ppl"] = ppl
# del any temp values
return example
def add_idx(example,idx):
example.update({"idx":idx})
return example
def check_input_lengths(example,idx, min_sample_len=0, min_prompt_len=0, min_completion_len=0):
orig_sample_length = example["orig_sample_length"]
prompt_length = example["prompt_length"]
real_completion_length = example["real_completion_length"]
# breakpoint()
conds = all([
orig_sample_length >= min_sample_len,
prompt_length >= min_prompt_len,
real_completion_length >= min_completion_len,
])
return conds
def check_output_lengths(example,min_output_len=0):
no_bl_output_len = example["no_bl_num_tokens_generated"]
w_bl_output_len = example["w_bl_num_tokens_generated"]
conds = all([
no_bl_output_len >= min_output_len,
w_bl_output_len >= min_output_len,
])
return conds
|