Spaces:
Sleeping
Sleeping
File size: 7,429 Bytes
eb957df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
from llama_index.core import Document
from llama_index.core import KnowledgeGraphIndex, ServiceContext, StorageContext
from llama_index.llms.openai import OpenAI
from llama_index.core.graph_stores import SimpleGraphStore
from llama_index.core import SimpleDirectoryReader, load_index_from_storage
from typing import List
from dotenv import load_dotenv
import os
import json
import networkx as nx
from pyvis.network import Network
from datetime import datetime
from retrieve import get_latest_dir
import html
load_dotenv()
llm = OpenAI(
temperature=0.0, model="gpt-3.5-turbo", api_key=os.getenv("OPENAI_API_KEY")
)
graph_store = SimpleGraphStore()
storage_context = StorageContext.from_defaults(graph_store=graph_store)
service_context = ServiceContext.from_defaults(
llm=llm, chunk_size=2048, chunk_overlap=24
)
def create_document(input_dir: str) -> List[Document]:
"""
Create a document from the given directory.
Args:
input_dir (str): The input directory to read the documents from.
Returns:
List[Document]: The list of documents from the directory.
"""
reader = SimpleDirectoryReader(
input_dir, exclude_hidden=True, required_exts=[".json"]
)
products_document = []
for docs in reader.iter_data():
products_document.extend(docs)
return products_document
def kg_triplet_extract_fn(text) -> List[str]:
"""
Extract the triplets from the text.
Args:
text (str): The text to extract the triplets from.
Returns:
List[str]: The list of triplets extracted from the text.
"""
json_text = text.split("\n\n")[-1]
product_spec = json.loads(json_text)
triplets = []
product_name = product_spec["name"]
del product_spec["name"]
for key, value in product_spec.items():
triplets.append((product_name, key, value))
return triplets
def generate_graph_visualization(kg_index):
"""
Generate a graph visualization from the KG index.
Args:
kg_index (KnowledgeGraphIndex): The Knowledge Graph index to generate the visualization from.
Returns:
str: The path to the generated graph visualization.
"""
output_directory = os.getenv("GRAPH_VIS_DIR", "graph_vis")
# Generate a timestamp for the filename
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
graph_output_file = f"{timestamp}.html"
graph_output_path = os.path.join(output_directory, graph_output_file)
g = kg_index.get_networkx_graph(limit=20000)
net = Network(
notebook=False,
cdn_resources="remote",
height="800px",
width="100%",
select_menu=True,
filter_menu=False,
)
net.from_nx(g)
net.force_atlas_2based(central_gravity=0.015, gravity=-31)
net.save_graph(graph_output_path)
print(f"Graph visualization saved to: {graph_output_path}")
return graph_output_path
def plot_subgraph(triplets):
"""
Plot a subgraph from the triplets.
Args:
triplets (str): The triplets to plot the subgraph from.
Returns:
str: The escaped HTML content to display the subgraph
"""
G = nx.DiGraph()
for edge_str in eval(triplets):
source, action, target = eval(edge_str)
G.add_edge(source, target, label=action)
net = Network(notebook=True, cdn_resources="remote", height="400px", width="100%")
net.from_nx(G)
net.force_atlas_2based(central_gravity=0.015, gravity=-31)
html_content = net.generate_html()
escaped_html = html.escape(html_content)
return escaped_html
def create_kg(max_features: int = 60):
"""
Create a Knowledge Graph from the given directory.
Args:
max_features (int): The maximum number of features to use for the KG.
Returns:
KnowledgeGraphIndex: The Knowledge Graph index.
"""
input_dir = os.getenv("PROD_SPEC_DIR", "prod_spec")
product_documents = create_document(input_dir)
kg_index = KnowledgeGraphIndex.from_documents(
documents=product_documents,
max_triplets_per_chunk=max_features,
storage_context=storage_context,
service_context=service_context,
show_progress=True,
include_embeddings=True,
kg_triplet_extract_fn=kg_triplet_extract_fn,
)
graphvis_path = generate_graph_visualization(kg_index)
return kg_index, graphvis_path
def persist_kg(kg_index: KnowledgeGraphIndex) -> str:
"""
Persist the KG index to storage.
Args:
kg_index (KnowledgeGraphIndex): The Knowledge Graph index to persist.
Returns:
str: The path to the persisted KG index.
"""
output_dir = os.getenv("GRAPH_DIR", "graphs")
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
kg_path = f"{output_dir}/{timestamp}"
kg_index.storage_context.persist(kg_path)
return kg_path
def load_kg(kg_dir: str) -> KnowledgeGraphIndex:
"""
Load the KG index from the given directory.
Args:
kg_dir (str): The parent directory to load the KG index from.
Returns:
KnowledgeGraphIndex: The loaded Knowledge Graph index.
"""
kg_path = get_latest_dir(kg_dir)
kg_index = load_index_from_storage(
StorageContext.from_defaults(persist_dir=kg_path)
)
return kg_index
def query(kg_dir: str, query: str):
"""
Query the KG index for a given query.
Args:
kg_dir (str): The directory to load the KG index from.
query (str): The query to ask the KG index.
Returns:
Response: The response from the KG index.
"""
kg_index = load_kg(kg_dir)
query_engine = kg_index.as_query_engine(
include_text=True,
response_mode="refine",
graph_store_query_depth=6,
similarity_top_k=5,
)
response = query_engine.query(query)
return response
def query_graph_qa(graph_rag_index, query, search_level):
"""
Query the Graph-RAG model for a given query.
Args:
graph_rag_index (KnowledgeGraphIndex): The Graph-RAG model index.
query (str): The query to ask the Graph-RAG model.
search_level (int): The max search level to use for the Graph-RAG model.
Returns:
tuple: The response, reference, and reference text from the Graph-RAG model.
"""
myretriever = graph_rag_index.as_retriever(
include_text=True,
similarity_top_k=search_level,
)
query_engine = graph_rag_index.as_query_engine(
sub_retrievers=[
myretriever,
],
graph_store_query_depth=6,
include_text=True,
similarity_top_k=search_level,
)
response = query_engine.query(query)
nodes = myretriever.retrieve(query)
reference = []
for _, value in response.metadata.items():
if isinstance(value, dict) and "kg_rel_texts" in value:
reference = value["kg_rel_texts"]
break
reference_text = []
for node in nodes:
reference_text.append(node.text)
return response, reference, reference_text
if __name__ == "__main__":
kg_index, graphvis_path = create_kg()
persist_kg(kg_index)
kg_index = load_kg(os.getenv("GRAPH_DIR", "graphs"))
generate_graph_visualization(kg_index)
response = query(
os.getenv("GRAPH_DIR", "graphs"),
"Tell me the Built-in memory in Apple iPhone 15 Pro Max 256Gb Blue Titanium?",
)
print(response)
key = list(response.metadata)[-1]
print(response.metadata[key])
|