File size: 7,900 Bytes
eb957df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c86e144
 
 
eb957df
c86e144
 
 
 
eb957df
c86e144
 
 
eb957df
c86e144
 
eb957df
c86e144
 
eb957df
 
c86e144
 
 
eb957df
c86e144
 
 
 
eb957df
c86e144
 
 
eb957df
c86e144
 
 
 
eb957df
c86e144
 
eb957df
c86e144
eb957df
c86e144
eb957df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c86e144
 
 
eb957df
c86e144
 
 
 
 
 
eb957df
c86e144
 
 
 
 
 
eb957df
c86e144
 
eb957df
c86e144
 
eb957df
c86e144
eb957df
c86e144
 
eb957df
c86e144
 
 
 
 
 
 
 
eb957df
 
 
 
 
 
 
 
 
 
 
c86e144
 
 
 
 
eb957df
 
 
c86e144
 
 
 
 
eb957df
c86e144
 
 
 
 
eb957df
 
 
 
 
 
c86e144
 
 
 
 
eb957df
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import gradio as gr
import base64
from llama_index.core import StorageContext, load_index_from_storage
from dotenv import load_dotenv
from retrieve import get_latest_dir, get_latest_html_file
from graph_handler import query_graph_qa, plot_subgraph
from embed_handler import query_rag_qa
from evaluate import evaluate_llm, reasoning_graph, get_coupon
import base64

load_dotenv()

KG_INDEX_PATH = get_latest_dir(os.getenv("GRAPH_DIR"))
KG_PLOT_PATH = get_latest_html_file(os.getenv("GRAPH_VIS"))
RAG_INDEX_PATH = get_latest_dir(os.getenv("EMBEDDING_DIR"))

# Load Graph-RAG index
graph_rag_index = load_index_from_storage(
    StorageContext.from_defaults(persist_dir=KG_INDEX_PATH)
)

# Load RAG index
rag_index = load_index_from_storage(
    StorageContext.from_defaults(persist_dir=RAG_INDEX_PATH)
)


def query_tqa(query, search_level):
    """
    Query the Graph-RAG and RAG models for a given query.

    Args:
    query (str): The query to ask the RAGs.
    search_level (int): The max search level to use for the Graph RAG.

    Returns:
    tuple: The response, reference, and reference text for the Graph-RAG and RAG models.
    """

    if not query.strip():
        raise gr.Error("Please enter a query before asking.")

    grag_response, grag_reference, grag_reference_text = query_graph_qa(
        graph_rag_index, query, search_level
    )
    rag_response, rag_reference, rag_reference_text = query_rag_qa(
        rag_index, query, search_level
    )
    return (
        grag_response,
        grag_reference,
        grag_reference_text,
        rag_response,
        rag_reference,
        rag_reference_text,
    )


# def eval_llm(query, rag_response, grag_response):
#     """
#     Evaluate the Graph-RAG and RAG responses using an LLM.

#     Args:
#     query (str): The query that was asked.
#     rag_response (str): The response from the Vanilla-RAG model.
#     grag_response (str): The response from the Graph-RAG model.

#     Returns:
#     str: The evaluation text on various criteria from the LLM.
#     """

#     if not query.strip() or not rag_response.strip() or not grag_response.strip():
#         raise gr.Error("Please ask a query and get responses before evaluating.")

#     eval_text = evaluate_llm(query, grag_response, rag_response)
#     return eval_text


# def reason_and_plot(query, grag_response, grag_reference):
#     """
#     Get the reasoning graph for a query and plot the knowledge graph.

#     Args:
#     query (str): The query to ask the Graph-RAG.
#     grag_response (str): The response from the Graph-RAG model.
#     grag_reference (str): The reference text from the Graph-RAG model.

#     Returns:
#     tuple: The reasoning graph and the HTML to plot the knowledge graph.
#     """

#     if not query.strip() or not grag_response.strip() or not grag_reference.strip():
#         raise gr.Error(
#             "Please ask a query and get a Graph-RAG response before reasoning."
#         )

#     graph_reasoning = reasoning_graph(query, grag_response, grag_reference)
#     escaped_html = plot_subgraph(grag_reference)

#     iframe_html = f'<iframe srcdoc="{escaped_html}" width="100%" height="400px" frameborder="0"></iframe>'

#     return graph_reasoning, iframe_html


def show_graph():
    """
    Show the latest graph visualization in an iframe.

    Returns:
    str: The HTML content to display the graph visualization in an iframe.
    """

    graph_vis_dir = os.getenv("GRAPH_VIS", "graph_vis")
    try:
        latest_graph = get_latest_html_file(graph_vis_dir)
        if latest_graph:
            with open(latest_graph, "r", encoding="utf-8") as f:
                html_content = f.read()

            encoded_html = base64.b64encode(html_content.encode()).decode()
            iframe_html = f'<iframe src="data:text/html;base64,{encoded_html}" width="100%" height="1000px" frameborder="0"></iframe>'
            return iframe_html
        else:
            return "No graph visualization found."
    except Exception as e:
        return f"Error: {str(e)}"


def reveal_coupon(query, grag_response):
    """
    Get the coupon from the query and response.

    Args:
    query (str): Query asked to Graph-RAG.
    grag_response (str): Response from the Graph-RAG model.

    Returns:
    str: Coupon with reasoning.
    """

    if not query.strip() or not grag_response.strip():
        raise gr.Error("Please ask a query and get a response before revealing the coupon.")

    coupon = get_coupon(query, grag_response)
    return coupon

with gr.Blocks() as demo:
    gr.Markdown("# Comfy Virtual Assistant")

    with gr.Row():
        with gr.Column(scale=4):
            query_input = gr.Textbox(label="Input Your Query", lines=3)
        with gr.Column(scale=1):
            search_level = gr.Slider(
                minimum=1, maximum=50, value=3, step=5, label="Search Level"
            )
            ask_button = gr.Button("Ask Comfy", variant="primary")

    examples = gr.Examples(
        examples=[
            ["Recommend me an apple phone that has more than 10MP camera."],
            ["What is the price of Samsung Galaxy S24 Ultra 12/256Gb Titanium Gray"],
            ["I want a phone with 5000 mAH or more battery"],
        ],
        inputs=[query_input],
    )

    with gr.Row():
        with gr.Column():
            gr.Markdown("### Graph-RAG")
            grag_output = gr.Textbox(label="Response", lines=5)
            # grag_reference = gr.Textbox(label="Triplets", lines=3)
            # with gr.Accordion("Extracted Reference (Raw)", open=False):
            #     grag_reference_text = gr.Textbox(label="Raw Reference", lines=5)

        # with gr.Column():
        #     gr.Markdown("### Vanilla RAG")
        #     rag_output = gr.Textbox(label="Response", lines=5)
        #     rag_reference = gr.Textbox(label="Extracted Reference", lines=3)
        #     with gr.Accordion("Extracted Reference (Raw)", open=False):
        #         rag_reference_text = gr.Textbox(label="Raw Reference", lines=5)

    # gr.Markdown("### Coupon")
    # with gr.Row():    
    #     with gr.Column():
    #         coupon = gr.Text(label="Coupon", lines=1)
    #     with gr.Column():
    #         reveal = gr.Button("Reveal Coupon", variant="secondary")

    # with gr.Row():
    #     gr.Markdown("### Evaluate and Compare")

    # with gr.Row():
    #     eval_button = gr.Button("Evaluate LLMs", variant="secondary")

    # grag_performance = gr.Textbox(label="Evaluation", lines=3)

    # with gr.Row():
    #     gr.Markdown("### Graph Reasoning")

    # with gr.Row():
    #     reason_button = gr.Button("Get Graph Reasoning", variant="secondary")

    # with gr.Row():
    #     with gr.Column():
    #         grag_reasoning = gr.Textbox(label="Graph-RAG Reasoning", lines=5)
    #     with gr.Column():
    #         subgraph_plot = gr.HTML()

    with gr.Row():
        plot_button = gr.Button("Plot Knowledge Graph", variant="secondary")

    kg_output = gr.HTML()

    ask_button.click(
        query_tqa,
        inputs=[query_input, search_level],
        outputs=[
            grag_output,
            # grag_reference,
            # grag_reference_text,
            # rag_output,
            # rag_reference,
            # rag_reference_text,
        ],
    )

    # eval_button.click(
    #     eval_llm,
    #     inputs=[query_input, rag_output, grag_output],
    #     outputs=[grag_performance],
    # )

    # reason_button.click(
    #     reason_and_plot,
    #     inputs=[query_input, grag_output, grag_reference],
    #     outputs=[grag_reasoning, subgraph_plot],
    # )

    plot_button.click(
        show_graph,
        outputs=[kg_output],
    )

    # reveal.click(
    #     reveal_coupon,
    #     inputs=[query_input, grag_output],
    #     outputs=[coupon],
    # )

demo.launch(auth=(os.getenv("ID"), os.getenv("PASS")), share=False)