File size: 4,302 Bytes
85ce65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse
import json

import torch

import utils
from onnxexport.model_onnx_speaker_mix import SynthesizerTrn

parser = argparse.ArgumentParser(description='SoVitsSvc OnnxExport')

def OnnxExport(path=None):
    device = torch.device("cpu")
    hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
    SVCVITS = SynthesizerTrn(
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        **hps.model)
    _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", SVCVITS, None)
    _ = SVCVITS.eval().to(device)
    for i in SVCVITS.parameters():
        i.requires_grad = False
    
    num_frames = 200

    test_hidden_unit = torch.rand(1, num_frames, SVCVITS.gin_channels)
    test_pitch = torch.rand(1, num_frames)
    test_vol = torch.rand(1, num_frames)
    test_mel2ph = torch.LongTensor(torch.arange(0, num_frames)).unsqueeze(0)
    test_uv = torch.ones(1, num_frames, dtype=torch.float32)
    test_noise = torch.randn(1, 192, num_frames)
    test_sid = torch.LongTensor([0])
    export_mix = True
    if len(hps.spk) < 2:
        export_mix = False
    
    if export_mix:
        spk_mix = []
        n_spk = len(hps.spk)
        for i in range(n_spk):
            spk_mix.append(1.0/float(n_spk))
        test_sid = torch.tensor(spk_mix)
        SVCVITS.export_chara_mix(hps.spk)
        test_sid = test_sid.unsqueeze(0)
        test_sid = test_sid.repeat(num_frames, 1)
    
    SVCVITS.eval()

    if export_mix:
        daxes = {
            "c": [0, 1],
            "f0": [1],
            "mel2ph": [1],
            "uv": [1],
            "noise": [2],
            "sid":[0]
        }
    else:
        daxes = {
            "c": [0, 1],
            "f0": [1],
            "mel2ph": [1],
            "uv": [1],
            "noise": [2]
        }
    
    input_names = ["c", "f0", "mel2ph", "uv", "noise", "sid"]
    output_names = ["audio", ]

    if SVCVITS.vol_embedding:
        input_names.append("vol")
        vol_dadict = {"vol" : [1]}
        daxes.update(vol_dadict)
        test_inputs = (
            test_hidden_unit.to(device),
            test_pitch.to(device),
            test_mel2ph.to(device),
            test_uv.to(device),
            test_noise.to(device),
            test_sid.to(device),
            test_vol.to(device)
        )
    else:
        test_inputs = (
            test_hidden_unit.to(device),
            test_pitch.to(device),
            test_mel2ph.to(device),
            test_uv.to(device),
            test_noise.to(device),
            test_sid.to(device)
        )

    # SVCVITS = torch.jit.script(SVCVITS)
    SVCVITS(test_hidden_unit.to(device),
            test_pitch.to(device),
            test_mel2ph.to(device),
            test_uv.to(device),
            test_noise.to(device),
            test_sid.to(device),
            test_vol.to(device))

    SVCVITS.dec.OnnxExport()

    torch.onnx.export(
        SVCVITS,
        test_inputs,
        f"checkpoints/{path}/{path}_SoVits.onnx",
        dynamic_axes=daxes,
        do_constant_folding=False,
        opset_version=16,
        verbose=False,
        input_names=input_names,
        output_names=output_names
    )

    vec_lay = "layer-12" if SVCVITS.gin_channels == 768 else "layer-9"
    spklist = []
    for key in hps.spk.keys():
        spklist.append(key)

    MoeVSConf = {
        "Folder" : f"{path}",
        "Name" : f"{path}",
        "Type" : "SoVits",
        "Rate" : hps.data.sampling_rate,
        "Hop" : hps.data.hop_length,
        "Hubert": f"vec-{SVCVITS.gin_channels}-{vec_lay}",
        "SoVits4": True,
        "SoVits3": False,
        "CharaMix": export_mix,
        "Volume": SVCVITS.vol_embedding,
        "HiddenSize": SVCVITS.gin_channels,
        "Characters": spklist,
        "Cluster": ""
    }

    with open(f"checkpoints/{path}.json", 'w') as MoeVsConfFile:
        json.dump(MoeVSConf, MoeVsConfFile, indent = 4)


if __name__ == '__main__':
    parser.add_argument('-n', '--model_name', type=str, default="TransformerFlow", help='模型文件夹名(根目录下新建ckeckpoints文件夹,在此文件夹下建立一个新的文件夹,放置模型,该文件夹名即为此项)')
    args = parser.parse_args()
    path = args.model_name
    OnnxExport(path)