File size: 9,738 Bytes
cd814fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c42dafc
cd814fd
c42dafc
cd814fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import whisper
import gradio as gr
import os
from pytube import YouTube


class WhisperModelUI(object):
    def __init__(self, ui_obj):
        self.name = "Whisper Model Processor UI"
        self.description = "This class is designed to build UI for our Whisper Model"
        self.ui_obj = ui_obj
        self.audio_files_list = ['No content']
        self.whisper_model = whisper.model.Whisper
        self.video_store_path = 'data_files'

    def load_content(self, file_list):
        video_out_path = os.path.join(os.getcwd(), self.video_store_path)

        self.audio_files_list = [f for f in os.listdir(video_out_path)
                            if os.path.isfile(video_out_path + "/" + f)
                            and (f.endswith(".mp4") or f.endswith('mp3'))]

        return gr.Dropdown.update(choices=self.audio_files_list)

    def load_whisper_model(self, model_type):
        try:
            asr_model = whisper.load_model(model_type.lower())
            self.whisper_model = asr_model
            status = "{} ロード完了".format(model_type)
        except:
            status = "ロードエラー {} model".format(model_type)

        return status, str(self.whisper_model)

    def load_youtube_video(self, video_url):
        video_out_path = os.path.join(os.getcwd(), self.video_store_path)
        yt = YouTube(video_url)
        local_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by(
            'resolution').desc().first().download(video_out_path)
        return local_video_path

    def get_video_to_text(self,
                          transcribe_or_decode,
                          video_list_dropdown_file_name,
                          language_detect,
                          translate_or_transcribe
                          ):
        debug_text = ""
        try:
            video_out_path = os.path.join(os.getcwd(), 'data_files')
            video_full_path = os.path.join(video_out_path, video_list_dropdown_file_name)
            if not os.path.isfile(video_full_path):
                video_text = "Selected video/audio is could not be located.."
            else:
                video_text = "Bad choice or result.."
                if transcribe_or_decode == 'Transcribe':
                    video_text, debug_text = self.run_asr_with_transcribe(video_full_path, language_detect,
                                                                          translate_or_transcribe)
                elif transcribe_or_decode == 'Decode':
                    audio = whisper.load_audio(video_full_path)
                    video_text, debug_text = self.run_asr_with_decode(audio, language_detect,
                                                                      translate_or_transcribe)
        except:
            video_text = "Error processing audio..."
        return video_text, debug_text

    def run_asr_with_decode(self, audio, language_detect, translate_or_transcribe):
        debug_info = "None.."

        if 'encoder' not in dir(self.whisper_model) or 'decoder' not in dir(self.whisper_model):
            return "Model is not loaded, please load the model first", debug_info

        if self.whisper_model.encoder is None or self.whisper_model.decoder is None:
            return "Model is not loaded, please load the model first", debug_info

        try:
            # pad/trim it to fit 30 seconds
            audio = whisper.pad_or_trim(audio)

            # make log-Mel spectrogram and move to the same device as the model
            mel = whisper.log_mel_spectrogram(audio).to(self.whisper_model.device)

            if language_detect == 'Detect':
                # detect the spoken language
                _, probs = self.whisper_model.detect_language(mel)
                # print(f"Detected language: {max(probs, key=probs.get)}")

            # decode the audio
            # mps crash if fp16=False is not used

            task_type = 'transcribe'
            if translate_or_transcribe == 'Translate':
                task_type = 'translate'

            if language_detect != 'Detect':
                options = whisper.DecodingOptions(fp16=False,
                                                  language=language_detect,
                                                  task=task_type)
            else:
                options = whisper.DecodingOptions(fp16=False,
                                                  task=task_type)

            result = whisper.decode(self.whisper_model, mel, options)
            result_text = result.text
            debug_info = str(result)
        except:
            result_text = "Error handing audio to text.."
        return result_text, debug_info

    def run_asr_with_transcribe(self, audio_path, language_detect, translate_or_transcribe):
        result_text = "Error..."
        debug_info = "None.."

        if 'encoder' not in dir(self.whisper_model) or 'decoder' not in dir(self.whisper_model):
            return "Model is not loaded, please load the model first", debug_info

        if self.whisper_model.encoder is None or self.whisper_model.decoder is None:
            return "Model is not loaded, please load the model first", debug_info

        task_type = 'transcribe'
        if translate_or_transcribe == 'Translate':
            task_type = 'translate'

        transcribe_options = dict(beam_size=5, best_of=5,
                                  fp16=False,
                                  task=task_type,
                                  without_timestamps=False)
        if language_detect != 'Detect':
            transcribe_options['language'] = language_detect

        transcription = self.whisper_model.transcribe(audio_path, **transcribe_options)
        if transcription is not None:
            result_text = transcription['text']
            debug_info = str(transcription)
        return result_text, debug_info

    def create_whisper_ui(self):
        with self.ui_obj:
            gr.Markdown("AI翻訳・書き起こし")
            with gr.Tabs():
                with gr.TabItem("YouTubeURLから"):
                    with gr.Row():
                        with gr.Column():
                            asr_model_type = gr.Radio(['Tiny', 'Base', 'Small', 'Medium', 'Large'],
                                                      label="モデルタイプ(精度)",
                                                      value='Base'
                                                      )
                            model_status_lbl = gr.Label(label="ローディングステータス")
                            load_model_btn = gr.Button("モデルをロード")
                            youtube_url = gr.Textbox(label="YouTube URL",
                                                     # value="https://www.youtube.com/watch?v=Y2nHd7El8iw"
                                                     value=""
                                                     )
                            youtube_video = gr.Video(label="ビデオ")
                            get_video_btn = gr.Button("YouTubeURLをロード")
                        with gr.Column():
                            video_list_dropdown = gr.Dropdown(self.audio_files_list, label="保存済みビデオ")
                            load_video_list_btn = gr.Button("全てのビデオをロード")
                            transcribe_or_decode = gr.Radio(['Transcribe', 'Decode'],
                                                            label="オプション(Transcribe = 書き起こし)",
                                                            value='Transcribe'
                                                            )
                            language_detect = gr.Dropdown(['Detect', 'English', 'Hindi', 'Japanese'],
                                                          label="自動検知か言語を選択")
                            translate_or_transcribe = gr.Dropdown(['Transcribe', 'Translate'],
                                                                  label="Translate(翻訳)か Transcribe(書き起こし)を選択")
                            get_video_txt_btn = gr.Button("変換開始!")
                            video_text = gr.Textbox(label="テキスト", lines=10)
                with gr.TabItem("デバッグ情報"):
                    with gr.Row():
                        with gr.Column():
                            debug_text = gr.Textbox(label="Debug Details", lines=20)
            load_model_btn.click(
                self.load_whisper_model,
                [
                    asr_model_type
                ],
                [
                    model_status_lbl,
                    debug_text
                ]
            )
            get_video_btn.click(
                self.load_youtube_video,
                [
                    youtube_url
                ],
                [
                    youtube_video
                ]
            )
            load_video_list_btn.click(
                self.load_content,
                [
                    video_list_dropdown
                ],
                [
                    video_list_dropdown
                ]
            )
            get_video_txt_btn.click(
                self.get_video_to_text,
                [
                    transcribe_or_decode,
                    video_list_dropdown,
                    language_detect,
                    translate_or_transcribe
                ],
                [
                    video_text,
                    debug_text
                ]
            )

    def launch_ui(self):
        self.ui_obj.launch(debug=True)