File size: 13,985 Bytes
285c547
41387a4
 
 
 
 
 
 
 
 
 
 
285c547
41387a4
 
 
 
 
285c547
41387a4
285c547
41387a4
 
81e879b
41387a4
81e879b
41387a4
 
 
 
 
285c547
41387a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285c547
41387a4
 
 
 
 
 
 
 
 
285c547
 
41387a4
 
 
285c547
41387a4
285c547
41387a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e879b
 
 
 
 
4c9f0fb
81e879b
 
4c9f0fb
41387a4
 
 
4c9f0fb
e72d0e1
41387a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285c547
41387a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8758515
 
 
 
41387a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e879b
41387a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285c547
 
41387a4
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import gradio as gr
import json
import logging
import argparse
import sys
import os
import math
import pickle
from deep_translator import GoogleTranslator
from gematria import calculate_gematria
from collections import defaultdict
from typing import Dict, List, Any, Optional

# --- Configuration ---
# Logging is kept for file-based or production logging, but we'll use print() for immediate console debug
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
BOOK_RANGE = range(1, 40)
CACHE_FILE = "tanakh_phrasedict.cache"

# --- Core Logic Functions ---

def get_power_result(total_sum: int, query_value: int) -> int:
    """Calculates the power or root result."""
    if query_value <= 1:
        return 1
    if query_value < total_sum:
        try:
            exponent = int(math.floor(math.log(total_sum, query_value)))
            return query_value ** exponent
        except (ValueError, OverflowError):
            return 1

def find_all_matching_phrases(target_sum: int, phrase_dictionary: Dict[int, List[Dict]]) -> List[Dict]:
    """Finds all phrases matching a target Gematria."""
    return phrase_dictionary.get(int(target_sum), [])

# --- Global State: Load dictionary once at startup ---
try:
    if not os.path.exists(CACHE_FILE):
        raise FileNotFoundError(f"ERROR: Cache file '{CACHE_FILE}' not found. Please run 'build_indices.py' first.")
    logging.info(f"Loading phrase dictionary from cache: {CACHE_FILE}")
    with open(CACHE_FILE, 'rb') as f:
        phrase_dictionary: Optional[Dict[int, List[Dict]]] = pickle.load(f)
    logging.info("Phrase dictionary loaded successfully for the Gradio app.")
except (FileNotFoundError, IOError, pickle.UnpicklingError) as e:
    logging.error(str(e))
    phrase_dictionary = None

# --- Main Analysis Function for Gradio ---

def run_analysis(query: str, translate: bool, process_verses: int, results_per_verse: int, xor_depth: int, progress=gr.Progress(track_tqdm=True)):
    """The main analysis function called by the Gradio interface."""
    if phrase_dictionary is None:
        return "## Fatal Error\nCould not start analysis. The phrase dictionary cache file (`tanakh_phrasedict.cache`) is missing or corrupt. Please run `build_indices.py` and restart the app."

    print("\n--- NEW ANALYSIS RUN ---") # Console Debug
    output_lines = []

    try:
        query_value = calculate_gematria(query)
        if query_value <= 1 and query:
            return f"## Error\nQuery '{query}' has an invalid Gematria value ({query_value}). Please enter a valid query."
    except Exception as e:
        return f"## Error\nCould not calculate Gematria for query '{query}'. Details: {e}"

    progress(0, desc="Initializing...")
    translator = None
    if translate:
        try:
            translator = GoogleTranslator(source='iw', target='en')
        except Exception as e:
            logging.error(f"Could not initialize translator: {e}")
            output_lines.append(f"**Warning:** Could not initialize translator: {e}")

    output_lines.append(f"## XOR Gematria Resonance Analysis for: `{query}`")

    verses_processed = 0
    resonance_count = 0

    # Using a generator to handle the nested loops cleanly and break out
    def get_verses():
        for book_num in BOOK_RANGE:
            filepath = f"texts/torah/{book_num:02}.json"
            if not os.path.exists(filepath): continue
            with open(filepath, 'r', encoding='utf-8') as f:
                data = json.load(f)
                for chap_idx, chapter in enumerate(data.get("text", []), start=1):
                    for verse_idx, verse_text in enumerate(chapter, start=1):
                        yield (book_num, chap_idx, verse_idx, verse_text)

    for book_num, chap_idx, verse_idx, verse_text in get_verses():
        # Correctly handle the processing limit
        if process_verses and verses_processed >= process_verses:
            print(f"DEBUG: Processing limit of {process_verses} verses reached. Stopping analysis.")
            break
        verses_processed += 1
        progress(verses_processed / process_verses, desc=f"Analyzing Verse {verses_processed}/{process_verses}")

        verse_sum = calculate_gematria(verse_text)
        if verse_sum <= 1: continue

        if query_value < verse_sum:
            power_result = get_power_result(verse_sum, query_value)
            main_target_sum = verse_sum ^ power_result
        elif query_value > verse_sum:
            main_target_sum = query_value ^ verse_sum
            power_result= 0
        elif query_value == verse_sum:
            main_target_sum = verse_sum
            power_result=0
        main_matches = find_all_matching_phrases(main_target_sum, phrase_dictionary)

        verse_ref = f"B{book_num:02d}, C{chap_idx}, V{verse_idx}"
        if power_result == 0:
            print(f"DEBUG: Analyzing [{verse_ref}] | Verse Sum: {verse_sum}, Main Target: {main_target_sum}") # Console Debug
        print(f"DEBUG: Analyzing [{verse_ref}] | Verse Sum: {verse_sum}, Power/Root: {power_result}, Main Target: {main_target_sum}") # Console Debug

        if not main_matches:
            print("DEBUG: No main resonance found. Skipping.") # Console Debug
            continue

        resonance_count += 1
        print(f"DEBUG: Found Resonance #{resonance_count}!") # Console Debug

        output_lines.append("\n---\n")
        output_lines.append(f"### Resonance #{resonance_count} in [{verse_ref}]")
        output_lines.append(f"> {verse_text.strip()}\n")

        output_lines.append("```")
        output_lines.append(f"Verse Sum (X) : {verse_sum} | Query: \"{query}\" (G: {query_value}) | Power/Root (Y): {power_result}")
        output_lines.append("```\n")

        def format_matches(matches: List[Dict], title: str, calculation_str: str):
            if not matches: return

            matches.sort(key=lambda p: (p.get('freq', 0) / p.get('words', 99)), reverse=True)
            matches_to_show = matches[:results_per_verse]

            output_lines.append(f"**{title}:** `{calculation_str}`")

            for match in matches_to_show:
                translation_str = ""
                if translator:
                    try:
                        translation_str = translator.translate(match['text'])
                    except Exception:
                        translation_str = "[Translation failed]"

                score = (p.get('freq', 0) / p.get('words', 99)) if (p:=match).get('words') else 0
                gematria_val = calculate_gematria(match['text'])

                output_lines.append(f"  * **{match['text']}**")
                output_lines.append(f"    `G: {gematria_val}, Words: {match.get('words', 'N/A')}, Freq: {match.get('freq', 'N/A')}, Score: {score:.2f}`")
                if translation_str:
                    output_lines.append(f"\n*Translation: \"{translation_str}\"*")
            output_lines.append("")

        if power_result!=0:
            calc_str = f"[{verse_sum}] ^ [{power_result}] โ†’ [G_target:{main_target_sum}]"
        elif power_result==0:
            calc_str = f"[{verse_sum}] ^ [{query_value}] โ†’ [G_target:{main_target_sum}]"
        format_matches(main_matches, "Main Resonance", calc_str)

        if xor_depth > 0:
            output_lines.append(f"**Bitplane Variations of the Result ({main_target_sum}):**")
            for depth in range(xor_depth):
                bit_flip = 1 << depth
                target_sum = main_target_sum ^ bit_flip
                bitplane_matches = find_all_matching_phrases(target_sum, phrase_dictionary)

                if bitplane_matches:
                    bitplane_calc_str = f"[{main_target_sum}] ^ [Bit {depth+1}] โ†’ [G_target:{target_sum}]"
                    format_matches(bitplane_matches, f"Variation (Depth {depth + 1})", bitplane_calc_str)

    if resonance_count == 0:
        output_lines.append("\n**No resonances found. Consider increasing 'Verses to Process' or trying a different query.**")

    print("--- ANALYSIS COMPLETE ---") # Console Debug
    return "\n".join(output_lines)

# --- Gradio UI Definition ---
# Custom CSS fse:or a professional dark theme inspired by the screenshot
custom_css = """
#output_markdown h3 {
    color: #f97316; /* Vibrant orange for main resonance headers */
    border-bottom: 2px solid #374151;
    padding-bottom: 8px;
    margin-top: 24px;
}
#output_markdown blockquote {
    background-color: #1f2937;
    border-left: 5px solid #f97316;
    padding: 12px;
    font-style: italic;
    color: #d1d5db;
}
#output_markdown code {
    background-color: #374151;
    color: #e5e7eb;
    padding: 3px 6px;
    border-radius: 5px;
    font-size: 0.9em;
}
"""

# Using the robust Default theme and customizing it for the desired dark look
dark_theme = gr.themes.Default(
    primary_hue=gr.themes.colors.orange,
    secondary_hue=gr.themes.colors.blue,
    neutral_hue=gr.themes.colors.slate
).set(
    body_background_fill="#0f172a",
    background_fill_primary="#1e293b",
    background_fill_secondary="#334155",
    body_text_color="#e2e8f0",
    color_accent_soft="#1e293b",
    border_color_accent="#334155",
    border_color_primary="#334155",
    button_primary_background_fill="#f97316",
    button_primary_text_color="#ffffff",
    button_secondary_background_fill="#334155",
    button_secondary_text_color="#e2e8f0",
)

with gr.Blocks(theme=dark_theme, css=custom_css, title="Tanakh XOR Gematria Resonance") as demo:
    gr.Markdown("# ๐Ÿ“œ Tanakh XOR Gematria Resonance")

    with gr.Tabs():
        with gr.TabItem("XOR Gematria Resonance"):
            with gr.Row():
                with gr.Column(scale=1):
                    query = gr.Textbox(
                        label="Query Phrase",
                        placeholder="e.g., ื™ื”ื•ื”, ืืœื”ื™ื, light...",
                    )
                    run_button = gr.Button("๐Ÿ”ฎ Divine Resonance", variant="primary")

                    with gr.Accordion("Advanced Parameters", open=False):
                        process_verses = gr.Slider(
                            label="Verses to Process", minimum=1, maximum=35000, step=1, value=10,
                            info="How many verses to analyze from the start of the Tanakh."
                        )
                        results_per_verse = gr.Slider(
                            label="Results per Resonance", minimum=1, maximum=10, step=1, value=1,
                            info="How many top phrases to show for each found resonance type."
                        )
                        xor_depth = gr.Slider(
                            label="Bitplane Variation Depth", minimum=0, maximum=16, step=1, value=2,
                            info="How many bit-levels of the main result to vary and analyze."
                        )
                        translate = gr.Checkbox(label="Translate to English", value=True)

                    gr.Examples(
                        examples=[
                            ["ื™ื”ื•ื”"], ["ืืœื”ื™ื"], ["ืฉื›ื™ื ื”"],
                            ["ืžืฉื™ื— ื™ืฉืžืขืืœ"], ["ืžืื” ืฉืœื•ืฉื™ื ื•ืฉื‘ืข"], ["ืฆื“ืง ื•ืžืฉืคื˜"]
                        ],
                        inputs=[query]
                    )

                with gr.Column(scale=3):
                    output_markdown = gr.Markdown(label="Resonances", elem_id="output_markdown")

        with gr.TabItem("About & Help"):
            gr.Markdown(
                """
                ### How It Works
                This tool explores the numerological and structural connections within the Tanakh based on Gematria and bitwise XOR operations. It is an instrument for textual exploration, not a historical or theological authority.

                1.  **Gematria Calculation:** The Gematria (numerical value) of your **Query Phrase** and each **Verse** in the Tanakh is calculated.
                2.  **Power/Root Operator (Y):** To create a non-obvious link, the Query's Gematria is transformed. If it's smaller than the Verse's Gematria, its highest possible power is taken. If larger, its n-th root is taken. This becomes the "Operator" (Y).
                3.  **Main Resonance:** The core operation is `Verse_Gematria (X) ^ Operator (Y)`. The result is a **Target Gematria**. The app then finds all phrases in the Tanakh with this exact numerical value. This is the "Main Resonance".
                4.  **Bitplane Variations:** To explore the "fractal neighborhood" of the Main Resonance, the app then "flips" each bit of the result, one by one. For each flipped bit (`depth`), it calculates a new Target Gematria (`Main_Result ^ 2^depth`) and finds corresponding phrases. This reveals concepts that are numerologically "close" to the main result.
                5.  **Scoring:** Results are sorted by a relevance score calculated as `Frequency / Word_Count` to prioritize short, common phrases.

                ### Parameters
                - **Verses to Process:** Limits how many verses the script analyzes. Higher numbers take longer.
                - **Results per Resonance:** Limits how many phrases are shown for the main resonance and each variation.
                - **Bitplane Variation Depth:** Controls how many "bit-flips" are tested. A depth of 5 will test flipping Bit 1, Bit 2, Bit 3, Bit 4, and Bit 5.
                """
            )

    run_button.click(
        fn=run_analysis,
        inputs=[query, translate, process_verses, results_per_verse, xor_depth],
        outputs=[output_markdown]
    )

if __name__ == "__main__":
    if phrase_dictionary is None:
        print("CRITICAL: Phrase dictionary could not be loaded. The application cannot start.")
        print("Please ensure 'tanakh_phrasedict.cache' exists and is valid. Run 'build_indices.py' if necessary.")
    else:
        # The share=True argument creates a public link for easy sharing. Remove it if you only want local access.
        demo.launch()