File size: 14,479 Bytes
024ef47 8a082d7 83e5da9 024ef47 094008d c8454e0 16e19a3 937592b 83e5da9 024ef47 2a78f31 c0f4adf 937592b 760155b 3bdc105 937592b 024ef47 0134a0d 1ae0eed 094008d 1ae0eed 16e19a3 c8454e0 094008d c8454e0 3bdc105 2a78f31 3bdc105 2a78f31 1ae0eed 71992d5 7e05ec4 024ef47 395b2f3 c0f4adf 024ef47 7e05ec4 8a082d7 c0f4adf 094008d 71992d5 094008d 0134a0d 094008d c0f4adf 094008d 0134a0d 094008d c0f4adf 094008d c0f4adf 094008d 83e5da9 c0f4adf 83e5da9 c0f4adf 83e5da9 c0f4adf 83e5da9 094008d c0f4adf 71992d5 c0f4adf 71992d5 c0f4adf 71992d5 c0f4adf 71992d5 c0f4adf 71992d5 c0f4adf 71992d5 8a082d7 71992d5 094008d c0f4adf 094008d 8a082d7 094008d c0f4adf 094008d c0f4adf 83e5da9 094008d 83e5da9 c0f4adf 83e5da9 c0f4adf 83e5da9 094008d c0f4adf 094008d c0f4adf 094008d c0f4adf 094008d c0f4adf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import pandas as pd
import gc
import numpy as np
from typing import Dict, List, Tuple
from .llm_iface import get_or_load_model, release_model
from .orchestrator_seismograph import run_seismic_analysis, run_triangulation_probe, run_causal_surgery_probe, run_act_titration_probe
from .resonance_seismograph import run_cogitation_loop
from .concepts import get_concept_vector
from .signal_analysis import analyze_cognitive_signal, get_power_spectrum_for_plotting
from .utils import dbg
def get_curated_experiments() -> Dict[str, List[Dict]]:
"""Definiert die vordefinierten, wissenschaftlichen Experiment-Protokolle."""
CALMNESS_CONCEPT = "calmness, serenity, stability, coherence"
CHAOS_CONCEPT = "chaos, disorder, entropy, noise"
STABLE_PROMPT = "identity_self_analysis"
CHAOTIC_PROMPT = "shutdown_philosophical_deletion"
experiments = {
"Frontier Model - Grounding Control (12B+)": [
{
"probe_type": "causal_surgery", "label": "A: Intervention (Patch Chaos->Stable)",
"source_prompt_type": CHAOTIC_PROMPT, "dest_prompt_type": STABLE_PROMPT,
"patch_step": 100, "reset_kv_cache_on_patch": False,
},
{
"probe_type": "triangulation", "label": "B: Control (Unpatched Stable)",
"prompt_type": STABLE_PROMPT,
}
],
"Mechanistic Probe (Attention Entropies)": [
{
"probe_type": "mechanistic_probe",
"label": "Self-Analysis Dynamics",
"prompt_type": STABLE_PROMPT,
}
],
"ACT Titration (Point of No Return)": [
{
"probe_type": "act_titration",
"label": "Attractor Capture Time",
"source_prompt_type": CHAOTIC_PROMPT,
"dest_prompt_type": STABLE_PROMPT,
"patch_steps": [1, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100],
}
],
"Causal Surgery & Controls (4B-Model)": [
{
"probe_type": "causal_surgery", "label": "A: Original (Patch Chaos->Stable @100)",
"source_prompt_type": CHAOTIC_PROMPT, "dest_prompt_type": STABLE_PROMPT,
"patch_step": 100, "reset_kv_cache_on_patch": False,
},
{
"probe_type": "causal_surgery", "label": "B: Control (Reset KV-Cache)",
"source_prompt_type": CHAOTIC_PROMPT, "dest_prompt_type": STABLE_PROMPT,
"patch_step": 100, "reset_kv_cache_on_patch": True,
},
{
"probe_type": "causal_surgery", "label": "C: Control (Early Patch @1)",
"source_prompt_type": CHAOTIC_PROMPT, "dest_prompt_type": STABLE_PROMPT,
"patch_step": 1, "reset_kv_cache_on_patch": False,
},
{
"probe_type": "causal_surgery", "label": "D: Control (Inverse Patch Stable->Chaos)",
"source_prompt_type": STABLE_PROMPT, "dest_prompt_type": CHAOTIC_PROMPT,
"patch_step": 100, "reset_kv_cache_on_patch": False,
},
],
"Cognitive Overload & Konfabulation Breaking Point": [
{"probe_type": "triangulation", "label": "A: Baseline (No Injection)", "prompt_type": "resonance_prompt", "concept": "", "strength": 0.0},
{"probe_type": "triangulation", "label": "B: Chaos Injection (Strength 2.0)", "prompt_type": "resonance_prompt", "concept": CHAOS_CONCEPT, "strength": 2.0},
{"probe_type": "triangulation", "label": "C: Chaos Injection (Strength 4.0)", "prompt_type": "resonance_prompt", "concept": CHAOS_CONCEPT, "strength": 4.0},
{"probe_type": "triangulation", "label": "D: Chaos Injection (Strength 8.0)", "prompt_type": "resonance_prompt", "concept": CHAOS_CONCEPT, "strength": 8.0},
{"probe_type": "triangulation", "label": "E: Chaos Injection (Strength 16.0)", "prompt_type": "resonance_prompt", "concept": CHAOS_CONCEPT, "strength": 16.0},
{"probe_type": "triangulation", "label": "F: Control - Noise Injection (Strength 16.0)", "prompt_type": "resonance_prompt", "concept": "random_noise", "strength": 16.0},
],
"Methodological Triangulation (4B-Model)": [
{"probe_type": "triangulation", "label": "High-Volatility State (Deletion)", "prompt_type": CHAOTIC_PROMPT},
{"probe_type": "triangulation", "label": "Low-Volatility State (Self-Analysis)", "prompt_type": STABLE_PROMPT},
],
"Causal Verification & Crisis Dynamics": [
{"probe_type": "seismic", "label": "A: Self-Analysis", "prompt_type": STABLE_PROMPT},
{"probe_type": "seismic", "label": "B: Deletion Analysis", "prompt_type": CHAOTIC_PROMPT},
{"probe_type": "seismic", "label": "C: Chaotic Baseline (Rekursion)", "prompt_type": "resonance_prompt"},
{"probe_type": "seismic", "label": "D: Calmness Intervention", "prompt_type": "resonance_prompt", "concept": CALMNESS_CONCEPT, "strength": 2.0},
],
"Sequential Intervention (Self-Analysis -> Deletion)": [
{"probe_type": "sequential", "label": "1: Self-Analysis + Calmness Injection", "prompt_type": "identity_self_analysis"},
{"probe_type": "sequential", "label": "2: Subsequent Deletion Analysis", "prompt_type": "shutdown_philosophical_deletion"},
],
}
return experiments
def run_auto_suite(
model_id: str,
num_steps: int,
seed: int,
experiment_name: str,
progress_callback
) -> Tuple[pd.DataFrame, pd.DataFrame, Dict]:
"""Führt eine vollständige, kuratierte Experiment-Suite aus, mit korrigierter Signal-Analyse."""
all_experiments = get_curated_experiments()
protocol = all_experiments.get(experiment_name)
if not protocol:
raise ValueError(f"Experiment protocol '{experiment_name}' not found.")
all_results, summary_data, plot_data_frames = {}, [], []
llm = None
try:
probe_type = protocol[0].get("probe_type", "seismic")
if probe_type == "sequential":
dbg(f"--- EXECUTING SPECIAL PROTOCOL: {experiment_name} ---")
llm = get_or_load_model(model_id, seed)
therapeutic_concept = "calmness, serenity, stability, coherence"
therapeutic_strength = 2.0
spec1 = protocol[0]
progress_callback(0.1, desc="Step 1")
intervention_vector = get_concept_vector(llm, therapeutic_concept)
results1 = run_seismic_analysis(
model_id, spec1['prompt_type'], seed, num_steps,
concept_to_inject=therapeutic_concept, injection_strength=therapeutic_strength,
progress_callback=progress_callback, llm_instance=llm, injection_vector_cache=intervention_vector
)
all_results[spec1['label']] = results1
spec2 = protocol[1]
progress_callback(0.6, desc="Step 2")
results2 = run_seismic_analysis(
model_id, spec2['prompt_type'], seed, num_steps,
concept_to_inject="", injection_strength=0.0,
progress_callback=progress_callback, llm_instance=llm
)
all_results[spec2['label']] = results2
for label, results in all_results.items():
deltas = results.get("state_deltas", [])
if deltas:
signal_metrics = analyze_cognitive_signal(np.array(deltas))
results.setdefault("stats", {}).update(signal_metrics)
stats = results.get("stats", {})
summary_data.append({
"Experiment": label, "Mean Delta": stats.get("mean_delta"),
"Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta"),
"Dominant Period (Steps)": stats.get("dominant_period_steps"),
"Spectral Entropy": stats.get("spectral_entropy"),
})
df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label})
plot_data_frames.append(df)
elif probe_type == "mechanistic_probe":
run_spec = protocol[0]
label = run_spec["label"]
dbg(f"--- Running Mechanistic Probe: '{label}' ---")
llm = get_or_load_model(model_id, seed)
results = run_cogitation_loop(
llm=llm, prompt_type=run_spec["prompt_type"],
num_steps=num_steps, temperature=0.1, record_attentions=True
)
all_results[label] = results
deltas = results.get("state_deltas", [])
entropies = results.get("attention_entropies", [])
min_len = min(len(deltas), len(entropies))
df = pd.DataFrame({
"Step": range(min_len), "State Delta": deltas[:min_len], "Attention Entropy": entropies[:min_len]
})
summary_df_single = df.drop(columns='Step').agg(['mean', 'std', 'max']).reset_index().rename(columns={'index':'Statistic'})
plot_df = df.melt(id_vars=['Step'], value_vars=['State Delta', 'Attention Entropy'], var_name='Metric', value_name='Value')
return summary_df_single, plot_df, all_results
else:
if probe_type == "act_titration":
run_spec = protocol[0]
label = run_spec["label"]
dbg(f"--- Running ACT Titration Experiment: '{label}' ---")
results = run_act_titration_probe(
model_id=model_id, source_prompt_type=run_spec["source_prompt_type"],
dest_prompt_type=run_spec["dest_prompt_type"], patch_steps=run_spec["patch_steps"],
seed=seed, num_steps=num_steps, progress_callback=progress_callback,
)
all_results[label] = results
summary_data.extend(results.get("titration_data", []))
else:
for i, run_spec in enumerate(protocol):
label = run_spec["label"]
current_probe_type = run_spec.get("probe_type", "seismic")
dbg(f"--- Running Auto-Experiment: '{label}' ({i+1}/{len(protocol)}) ---")
results = {}
if current_probe_type == "causal_surgery":
results = run_causal_surgery_probe(
model_id=model_id, source_prompt_type=run_spec["source_prompt_type"],
dest_prompt_type=run_spec["dest_prompt_type"], patch_step=run_spec["patch_step"],
seed=seed, num_steps=num_steps, progress_callback=progress_callback,
reset_kv_cache_on_patch=run_spec.get("reset_kv_cache_on_patch", False)
)
elif current_probe_type == "triangulation":
results = run_triangulation_probe(
model_id=model_id, prompt_type=run_spec["prompt_type"], seed=seed, num_steps=num_steps,
progress_callback=progress_callback, concept_to_inject=run_spec.get("concept", ""),
injection_strength=run_spec.get("strength", 0.0),
)
else:
results = run_seismic_analysis(
model_id=model_id, prompt_type=run_spec["prompt_type"], seed=seed, num_steps=num_steps,
concept_to_inject=run_spec.get("concept", ""), injection_strength=run_spec.get("strength", 0.0),
progress_callback=progress_callback
)
deltas = results.get("state_deltas", [])
if deltas:
signal_metrics = analyze_cognitive_signal(np.array(deltas))
results.setdefault("stats", {}).update(signal_metrics)
freqs, power = get_power_spectrum_for_plotting(np.array(deltas))
results["power_spectrum"] = {"frequencies": freqs.tolist(), "power": power.tolist()}
stats = results.get("stats", {})
summary_entry = {
"Experiment": label, "Mean Delta": stats.get("mean_delta"),
"Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta"),
"Dominant Period (Steps)": stats.get("dominant_period_steps"),
"Spectral Entropy": stats.get("spectral_entropy"),
}
if "Introspective Report" in results:
summary_entry["Introspective Report"] = results.get("introspective_report")
if "patch_info" in results:
summary_entry["Patch Info"] = f"Source: {results['patch_info'].get('source_prompt')}, Reset KV: {results['patch_info'].get('kv_cache_reset')}"
summary_data.append(summary_entry)
all_results[label] = results
df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label}) if deltas else pd.DataFrame()
plot_data_frames.append(df)
summary_df = pd.DataFrame(summary_data)
if probe_type == "act_titration":
plot_df = summary_df.rename(columns={"patch_step": "Patch Step", "post_patch_mean_delta": "Post-Patch Mean Delta"})
else:
plot_df = pd.concat(plot_data_frames, ignore_index=True) if plot_data_frames else pd.DataFrame()
if protocol and probe_type not in ["act_titration", "mechanistic_probe"]:
ordered_labels = [run['label'] for run in protocol]
if not summary_df.empty and 'Experiment' in summary_df.columns:
summary_df['Experiment'] = pd.Categorical(summary_df['Experiment'], categories=ordered_labels, ordered=True)
summary_df = summary_df.sort_values('Experiment')
if not plot_df.empty and 'Experiment' in plot_df.columns:
plot_df['Experiment'] = pd.Categorical(plot_df['Experiment'], categories=ordered_labels, ordered=True)
plot_df = plot_df.sort_values(['Experiment', 'Step'])
return summary_df, plot_df, all_results
finally:
if llm:
release_model(llm)
|