Spaces:
Running
Running
File size: 26,570 Bytes
6695a01 1722634 fced355 8197f3c 1722634 fced355 8197f3c fced355 8197f3c fced355 8197f3c fced355 8197f3c fced355 6695a01 fced355 1722634 d82b2bb 1722634 fced355 1722634 6695a01 fced355 6695a01 8197f3c 1722634 8197f3c 1722634 6695a01 8197f3c 1722634 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 1722634 8197f3c d82b2bb 8197f3c 1722634 d82b2bb 8197f3c d82b2bb 8197f3c 1722634 8197f3c 6695a01 8197f3c 6695a01 8197f3c 1722634 6695a01 fced355 6695a01 1722634 8197f3c fced355 871992f 1722634 8197f3c 6695a01 8197f3c 1722634 8197f3c 1722634 8197f3c 1722634 6695a01 1722634 8197f3c fced355 6695a01 8197f3c 6695a01 1722634 d82b2bb 8197f3c fced355 8197f3c d82b2bb 8197f3c 6695a01 1722634 6695a01 8197f3c 871992f fced355 8197f3c 871992f fced355 871992f 6695a01 d82b2bb 8197f3c 1722634 8197f3c 6695a01 8197f3c 1722634 d82b2bb 8197f3c 1722634 8197f3c 6695a01 fced355 1722634 8197f3c 6695a01 d82b2bb fced355 871992f fced355 8197f3c 1722634 8197f3c 1722634 d82b2bb fced355 8197f3c 1722634 8197f3c 1722634 8197f3c fced355 1722634 fced355 871992f 1722634 fced355 871992f 1722634 8197f3c fced355 8197f3c fced355 8197f3c fced355 8197f3c fced355 8197f3c 6695a01 8197f3c 1722634 fced355 6695a01 8197f3c 6695a01 8197f3c 6695a01 fced355 8197f3c d82b2bb 6695a01 1722634 8197f3c d82b2bb fced355 6695a01 fced355 6695a01 fced355 6695a01 8197f3c 1722634 6695a01 1722634 8197f3c 6695a01 1722634 fced355 1722634 6695a01 1722634 6695a01 fced355 8197f3c d82b2bb 6695a01 1722634 fced355 1722634 fced355 8197f3c 1722634 8197f3c 6695a01 1722634 8197f3c 1722634 8197f3c fced355 8197f3c fced355 8197f3c 6695a01 1722634 6695a01 8197f3c fced355 d82b2bb 6695a01 fced355 8197f3c 6695a01 fced355 d82b2bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import hashlib
# --- Future Entropy/State Predictor (FEP V6) --- (No changes from V6.1/V6.2)
class FutureEntropyStatePredictor(nn.Module):
def __init__(self, ssr_dim, input_scalar_dim=2, hidden_dim=32, name=""):
super().__init__()
self.ssr_dim = ssr_dim; self.name = name; self.debug_prints_enabled = False
fep_input_dim = ssr_dim + input_scalar_dim
self.fc_ssr1 = nn.Linear(fep_input_dim, hidden_dim * 2); self.fc_ssr2 = nn.Linear(hidden_dim * 2, hidden_dim); self.fc_ssr_out = nn.Linear(hidden_dim, ssr_dim)
self.fc_ent1 = nn.Linear(fep_input_dim, hidden_dim); self.fc_ent_out = nn.Linear(hidden_dim, 1)
def forward(self, current_ssr_detached, current_block_entropy_detached, current_static_target_diff_detached):
if current_ssr_detached.dim() == 1: current_ssr_expanded = current_ssr_detached.unsqueeze(0)
else: current_ssr_expanded = current_ssr_detached
current_block_entropy_exp = current_block_entropy_detached.view(current_ssr_expanded.size(0), -1)
current_static_target_diff_exp = current_static_target_diff_detached.view(current_ssr_expanded.size(0),-1)
fep_input = torch.cat((current_ssr_expanded, current_block_entropy_exp, current_static_target_diff_exp), dim=1)
h_ssr = F.relu(self.fc_ssr1(fep_input)); h_ssr = F.relu(self.fc_ssr2(h_ssr)); delta_ssr_proposal = torch.tanh(self.fc_ssr_out(h_ssr))
h_ent = F.relu(self.fc_ent1(fep_input)); entropy_adj_factor_raw = self.fc_ent_out(h_ent)
if current_ssr_detached.dim() == 1: delta_ssr_proposal = delta_ssr_proposal.squeeze(0); entropy_adj_factor_raw = entropy_adj_factor_raw.squeeze(0)
return delta_ssr_proposal, entropy_adj_factor_raw.squeeze(-1)
# --- Entropy Estimator --- (No change from V6.1/V6.2)
class EntropyEstimator(nn.Module):
def __init__(self, input_dim, hidden_dim=32, name=""):
super().__init__(); self.fc1 = nn.Linear(input_dim, hidden_dim); self.fc2 = nn.Linear(hidden_dim, 1); self.name = name; self.debug_prints_enabled = False
def forward(self, x, active_mask=None):
if x.numel() == 0: return torch.tensor(0.0, device=x.device)
if active_mask is not None:
if active_mask.dtype != torch.bool: active_mask = active_mask.bool()
if x.dim() == 3 and active_mask.dim() == 2 and x.shape[0] == active_mask.shape[0] and x.shape[1] == active_mask.shape[1]: x_masked = x[active_mask]
elif x.dim() == 2 and active_mask.dim() == 1 and x.shape[0] == active_mask.shape[0]: x_masked = x[active_mask]
else: x_masked = x.reshape(-1, x.size(-1))
else: x_masked = x.reshape(-1, x.size(-1))
if x_masked.numel() == 0: return torch.tensor(0.0, device=x.device)
h = F.relu(self.fc1(x_masked)); return torch.sigmoid(self.fc2(h)).mean()
# --- Seed Parser (V6) --- (No changes from V6.1/V6.2)
class SeedParser:
def __init__(self, seed_phrase, seed_number_str, d_model, ssr_dim, num_adaptive_blocks, num_sub_modules_per_block):
self.seed_phrase = seed_phrase; self.seed_number_str = seed_number_str; self.d_model = d_model
self.ssr_dim = ssr_dim
self.num_adaptive_blocks = num_adaptive_blocks; self.num_sub_modules_per_block = num_sub_modules_per_block
self.debug_prints_enabled = True
if self.debug_prints_enabled: print(f"--- SeedParser Initialization (V6) ---\n Seed Phrase (start): '{self.seed_phrase[:50]}...'\n Seed Number: {self.seed_number_str}")
phrase_hash = hashlib.sha256(seed_phrase.encode()).hexdigest(); self.phrase_base_val = int(phrase_hash[:16], 16)
if self.debug_prints_enabled: print(f" Phrase Base Value (from hash): {self.phrase_base_val}")
self.num_sequence = [int(d) for d in seed_number_str if d.isdigit()]
if not self.num_sequence: self.num_sequence = [sum(bytearray(seed_number_str.encode())) % 10]
if self.debug_prints_enabled: print(f" Numerical Sequence (from seed number): {self.num_sequence}")
self.init_map = self._generate_init_map()
if self.debug_prints_enabled:
print(f" SeedParser: Generated InitMap:")
for i, block_config in enumerate(self.init_map["block_configs"]):
raw_gate_scores_str = [f'{g:.3f}' for g in block_config['raw_gate_scores_for_param_init']]
initial_ssr_str = [f'{s:.3f}' for s in block_config['initial_ssr_values'][:min(3, self.ssr_dim)]] + (["..."] if self.ssr_dim > 3 else [])
print(f" Block {i}: StaticTgtEnt: {block_config['static_target_entropy']:.4f}, RawGateScores: {raw_gate_scores_str}, InitialSSR (sample): {initial_ssr_str}")
if self.debug_prints_enabled: print(f"--- SeedParser Initialized ---")
def _get_deterministic_float_list(self, key_name_prefix, num_values, min_val=-1.0, max_val=1.0, sequence_idx_offset=0):
values = []
for i in range(num_values): values.append(self._get_deterministic_float(f"{key_name_prefix}_{i}", min_val, max_val, sequence_idx_offset + i))
return values
def _get_deterministic_float(self, key_name, min_val=0.0, max_val=1.0, sequence_idx_offset=0):
key_specific_hash = int(hashlib.sha256(key_name.encode() + self.seed_phrase.encode()).hexdigest()[:8], 16); num_seq_val = 0
if self.num_sequence:
for i_digit, digit in enumerate(self.num_sequence): num_seq_val = (num_seq_val * 10 + digit + i_digit) % 1000003
combined_seed_val = self.phrase_base_val + key_specific_hash + num_seq_val + sequence_idx_offset
norm_float = (math.sin(float(combined_seed_val) * 0.12345) + 1.0) / 2.0
return min_val + norm_float * (max_val - min_val)
def _generate_init_map(self):
init_map = {"block_configs": []}
for i in range(self.num_adaptive_blocks):
gate_raw_scores = self._get_deterministic_float_list(f"block_{i}_gate_raw_score", self.num_sub_modules_per_block, -1.5, 1.5, sequence_idx_offset=i*30)
initial_ssr_values = self._get_deterministic_float_list(f"block_{i}_initial_ssr", self.ssr_dim, -0.1, 0.1, sequence_idx_offset=i*30 + self.num_sub_modules_per_block)
static_target_entropy = self._get_deterministic_float(f"block_{i}_static_target_entropy", 0.15, 0.45, sequence_idx_offset=i*30 + self.num_sub_modules_per_block + self.ssr_dim)
init_map["block_configs"].append({"raw_gate_scores_for_param_init": gate_raw_scores, "initial_ssr_values": initial_ssr_values, "static_target_entropy": static_target_entropy})
return init_map
def get_block_config(self, block_idx):
if 0 <= block_idx < len(self.init_map["block_configs"]): return self.init_map["block_configs"][block_idx]
return None
# --- Adaptive Block (V6.3) ---
class AdaptiveBlock(nn.Module):
MAX_DYNAMIC_ENTROPY_ADJUSTMENT_RANGE = 0.05
INITIAL_HEURISTIC_STRENGTH = 0.025
FINAL_HEURISTIC_STRENGTH = 0.005
# V6.3: Increased initial SSR proposal scale
INITIAL_SSR_PROPOSAL_SCALE = 0.25 # Was 0.2
FINAL_SSR_PROPOSAL_SCALE = 0.05
def __init__(self, d_model, ssr_dim, n_heads, d_ff, dropout, seed_parser_config_for_block, block_idx, num_sub_modules=3):
super().__init__()
self.d_model = d_model; self.ssr_dim = ssr_dim; self.block_idx = block_idx; self.num_sub_modules = num_sub_modules
self.config_from_seed = seed_parser_config_for_block; self.debug_prints_enabled = True
initial_ssr_vals = self.config_from_seed.get("initial_ssr_values", [0.0] * self.ssr_dim)
if len(initial_ssr_vals) != self.ssr_dim: initial_ssr_vals = [0.0] * self.ssr_dim
self.ssr = nn.Parameter(torch.tensor(initial_ssr_vals, dtype=torch.float32))
self.register_buffer('initial_ssr_buffer', torch.tensor(initial_ssr_vals, dtype=torch.float32))
raw_gate_param_inits_list = self.config_from_seed.get("raw_gate_scores_for_param_init", [0.0] * self.num_sub_modules)
if len(raw_gate_param_inits_list) != self.num_sub_modules: raw_gate_param_inits_list = [0.0] * self.num_sub_modules
self.gates_params = nn.Parameter(torch.tensor(raw_gate_param_inits_list, dtype=torch.float32))
self.register_buffer('initial_raw_gate_scores_buffer', torch.tensor(raw_gate_param_inits_list, dtype=torch.float32))
if self.debug_prints_enabled:
raw_gate_scores_str = [f'{g:.3f}' for g in raw_gate_param_inits_list]
ssr_sample_str = [f'{s:.3f}' for s in initial_ssr_vals[:min(3, self.ssr_dim)]] + (["..."] if self.ssr_dim > 3 else [])
print(f" Initializing AdaptiveBlock {self.block_idx} (V6.3): StaticSeedTgtEnt={self.config_from_seed['static_target_entropy']:.3f}, InitialRawGateScores={raw_gate_scores_str}, InitialSSR (sample): {ssr_sample_str}")
self.d_model_effective = self.d_model + self.ssr_dim
self.sub_module_0 = nn.MultiheadAttention(self.d_model_effective, n_heads, dropout=dropout, batch_first=True)
self.sub_module_1 = nn.Sequential(nn.Linear(self.d_model_effective, d_ff), nn.GELU(), nn.Dropout(dropout), nn.Linear(d_ff, self.d_model_effective))
self.sub_module_2 = nn.Sequential(nn.Linear(self.d_model_effective, self.d_model_effective), nn.GELU(), nn.Dropout(dropout))
self.sub_modules = nn.ModuleList([self.sub_module_0, self.sub_module_1, self.sub_module_2])
if self.num_sub_modules > len(self.sub_modules): self.num_sub_modules = len(self.sub_modules)
elif self.num_sub_modules <= 0: raise ValueError(f"AdaptiveBlock {self.block_idx} must have at least one sub_module.")
self.norm_input_x = nn.LayerNorm(self.d_model)
self.norm_ssr_input = nn.LayerNorm(self.ssr_dim)
self.norm_after_gates = nn.LayerNorm(self.d_model_effective)
self.ssr_update_net = nn.Sequential(
nn.Linear(self.ssr_dim + self.d_model_effective + self.ssr_dim, self.ssr_dim * 2),
nn.GELU(), nn.Dropout(dropout),
nn.Linear(self.ssr_dim * 2, self.ssr_dim)
)
self.norm_ssr_output = nn.LayerNorm(self.ssr_dim)
self.dropout_layer = nn.Dropout(dropout)
self.output_entropy_estimator = EntropyEstimator(self.d_model_effective, name=f"Block{block_idx}_ProcessedOutEntropy")
self.x_output_entropy_estimator = EntropyEstimator(self.d_model, name=f"Block{block_idx}_X_OutEntropy") # V6.3
self.fep = FutureEntropyStatePredictor(ssr_dim=self.ssr_dim, input_scalar_dim=2, name=f"Block{block_idx}_FEP")
self.wiring_phase_active = False
self.static_seed_target_entropy = self.config_from_seed.get("static_target_entropy", 0.25)
self.current_epoch_in_wiring = 0
self.total_wiring_epochs = 1
def set_wiring_phase(self, active, current_epoch_num=0, total_wiring_epochs=1):
self.wiring_phase_active = active
if active: self.current_epoch_in_wiring = current_epoch_num; self.total_wiring_epochs = total_wiring_epochs if total_wiring_epochs > 0 else 1
def _get_current_decaying_factor(self, initial_val, final_val):
if not self.wiring_phase_active or self.total_wiring_epochs <= 1: return initial_val
progress = min(self.current_epoch_in_wiring / max(1, (self.total_wiring_epochs - 1)), 1.0)
return initial_val - progress * (initial_val - final_val)
def _get_current_heuristic_strength(self):
return self._get_current_decaying_factor(self.INITIAL_HEURISTIC_STRENGTH, self.FINAL_HEURISTIC_STRENGTH)
def _get_current_ssr_proposal_scale(self): # V6.1
return self._get_current_decaying_factor(self.INITIAL_SSR_PROPOSAL_SCALE, self.FINAL_SSR_PROPOSAL_SCALE)
def forward(self, x, key_padding_mask=None, attn_mask=None):
batch_size, seq_len, _ = x.shape
ssr_before_update_for_loss = self.ssr.data.clone().detach()
current_ssr_expanded = self.ssr.unsqueeze(0).unsqueeze(0).expand(batch_size, seq_len, -1).to(x.device)
normed_x = self.norm_input_x(x)
normed_ssr_expanded = self.norm_ssr_input(current_ssr_expanded)
x_conditioned = torch.cat((normed_x, normed_ssr_expanded), dim=-1)
current_gates_activations = torch.sigmoid(self.gates_params)
if self.debug_prints_enabled and (self.wiring_phase_active or not self.training):
ssr_print_val = self.ssr.data.detach().clone()
ssr_sample_str = [f'{s.item():.3f}' for s in ssr_print_val[:min(3, self.ssr_dim)]] + (["..."] if self.ssr_dim > 3 else [])
print(f" AdaptiveBlock {self.block_idx} (Wiring: {'ON' if self.wiring_phase_active else 'OFF'}, Epoch {self.current_epoch_in_wiring+1}/{self.total_wiring_epochs if self.wiring_phase_active else 'N/A'})")
print(f" Input x: {x.shape}, CurrentSSR (sample): {ssr_sample_str}, RawG: {[f'{g.item():.3f}' for g in self.gates_params.data]}, SigmoidG: {[f'{s.item():.3f}' for s in current_gates_activations.data]}")
outputs_from_submodules = []
for i, module_instance in enumerate(self.sub_modules):
if i >= self.num_sub_modules: break
if i == 0: module_out, _ = module_instance(x_conditioned, x_conditioned, x_conditioned, key_padding_mask=key_padding_mask, attn_mask=attn_mask, need_weights=False)
else: module_out = module_instance(x_conditioned)
outputs_from_submodules.append(module_out * current_gates_activations[i])
gated_sum_output = torch.sum(torch.stack(outputs_from_submodules, dim=0), dim=0) if outputs_from_submodules else torch.zeros_like(x_conditioned)
block_processed_output_unnorm = x_conditioned + self.dropout_layer(gated_sum_output)
block_processed_output = self.norm_after_gates(block_processed_output_unnorm)
x_output_for_next_block = block_processed_output[:, :, :self.d_model]
# V6.2: Get entropy of d_model part for loss
x_output_part_entropy = self.x_output_entropy_estimator(x_output_for_next_block.detach(), active_mask=~key_padding_mask if key_padding_mask is not None else None)
block_processed_output_entropy = self.output_entropy_estimator(block_processed_output.detach(), active_mask=~key_padding_mask if key_padding_mask is not None else None)
current_static_target_diff = block_processed_output_entropy - self.static_seed_target_entropy
dynamic_target_entropy_for_heuristic = self.static_seed_target_entropy
fep_delta_ssr_proposal_scaled = torch.zeros_like(self.ssr.data, device=x.device)
fep_entropy_adj_factor_for_report = torch.tensor(0.0, device=x.device)
if self.wiring_phase_active and self.training:
fep_delta_ssr_proposal_raw, fep_entropy_adj_factor_raw = self.fep(self.ssr.data.detach(), block_processed_output_entropy.detach(), current_static_target_diff.detach())
current_ssr_scale = self._get_current_ssr_proposal_scale() # V6.1
fep_delta_ssr_proposal_scaled = fep_delta_ssr_proposal_raw * current_ssr_scale
fep_entropy_adj_factor_tanh = torch.tanh(fep_entropy_adj_factor_raw)
dynamic_adjustment = fep_entropy_adj_factor_tanh * self.MAX_DYNAMIC_ENTROPY_ADJUSTMENT_RANGE
dynamic_target_entropy_for_heuristic = self.static_seed_target_entropy + dynamic_adjustment.item()
dynamic_target_entropy_for_heuristic = max(0.01, min(0.99, dynamic_target_entropy_for_heuristic))
fep_entropy_adj_factor_for_report = fep_entropy_adj_factor_tanh
with torch.no_grad():
entropy_diff_for_heuristic = block_processed_output_entropy - dynamic_target_entropy_for_heuristic
base_adj_strength = self._get_current_heuristic_strength()
adaptive_strength_factor = min(max(abs(entropy_diff_for_heuristic.item()) * 7.0, 0.3), 2.5)
adj_strength = base_adj_strength * adaptive_strength_factor
if self.debug_prints_enabled:
print(f" AdaptiveBlock {self.block_idx} WIRING HEURISTIC: RawG={[f'{g.item():.3f}' for g in self.gates_params.data]}, SigmoidG={[f'{s.item():.3f}' for s in current_gates_activations.data]}")
print(f" BlockProcOutEnt={block_processed_output_entropy.item():.4f}, X_OutEnt={x_output_part_entropy.item():.4f}, StaticTgtEnt={self.static_seed_target_entropy:.4f}, FEP_EntAdjFactor={fep_entropy_adj_factor_tanh.item():.4f}, DynTgtEnt={dynamic_target_entropy_for_heuristic:.4f}, ED_Dyn={entropy_diff_for_heuristic.item():.4f}, BaseHeurStr={base_adj_strength:.4f} AdjStr={adj_strength:.4f}, SSR_PropScale={current_ssr_scale:.4f}")
if entropy_diff_for_heuristic.item() > 1e-4:
self.gates_params.data[0] -= adj_strength; self.gates_params.data[1] += adj_strength * 0.6
if self.num_sub_modules > 2: self.gates_params.data[2] += adj_strength * 0.4
elif entropy_diff_for_heuristic.item() < -1e-4:
self.gates_params.data[0] += adj_strength; self.gates_params.data[1] -= adj_strength * 0.6
if self.num_sub_modules > 2: self.gates_params.data[2] -= adj_strength * 0.4
self.gates_params.data.clamp_(-3.5, 3.5)
if self.debug_prints_enabled: print(f" AdaptiveBlock {self.block_idx} WIRING HEURISTIC POST: RawG={[f'{g.item():.3f}' for g in self.gates_params.data]}, SigmoidG={[f'{s.item():.3f}' for s in torch.sigmoid(self.gates_params.data)]}")
block_output_aggregated = torch.mean(block_processed_output, dim=1)
ssr_update_input_list = []
for b_idx in range(batch_size):
current_fep_delta_ssr_for_update = fep_delta_ssr_proposal_scaled[b_idx] if fep_delta_ssr_proposal_scaled.dim() > 1 and fep_delta_ssr_proposal_scaled.size(0) == batch_size else fep_delta_ssr_proposal_scaled
# V6.2 EXPERIMENT: block_output_aggregated is NOT detached to allow gradients to flow back
ssr_update_input_list.append(torch.cat((
self.ssr.data.detach().clone(), # Previous SSR state (context for update)
block_output_aggregated[b_idx], # Current block's processed output (NOT detached)
current_fep_delta_ssr_for_update.detach() # FEP proposal (context for update)
)))
ssr_update_input_batched = torch.stack(ssr_update_input_list, dim=0)
new_ssr_values_batched = self.ssr_update_net(ssr_update_input_batched)
if self.training: self.ssr.data = self.norm_ssr_output(torch.mean(new_ssr_values_batched, dim=0))
elif batch_size == 1: self.ssr.data = self.norm_ssr_output(new_ssr_values_batched.squeeze(0))
ssr_after_update_for_report = self.ssr.data.clone()
return x_output_for_next_block, block_processed_output_entropy, x_output_part_entropy, \
current_gates_activations, self.gates_params.data.clone(), \
fep_entropy_adj_factor_for_report, torch.tensor(dynamic_target_entropy_for_heuristic, device=x.device), \
ssr_before_update_for_loss, ssr_after_update_for_report, fep_delta_ssr_proposal_scaled
# --- Positional Encoding ---
class PositionalEncoding(nn.Module):
def __init__(self,d_model,dropout=0.1,max_len=512): super().__init__(); self.dropout=nn.Dropout(p=dropout); pe=torch.zeros(max_len,d_model); pos=torch.arange(0,max_len,dtype=torch.float).unsqueeze(1); div=torch.exp(torch.arange(0,d_model,2).float()*(-math.log(10000.0)/d_model)); pe[:,0::2]=torch.sin(pos*div); pe[:,1::2]=torch.cos(pos*div); self.register_buffer('pe',pe.unsqueeze(0))
def forward(self,x): x=x+self.pe[:,:x.size(1),:]; return self.dropout(x)
# --- Main SWCK Model (V6.2) ---
class SWCKModel(nn.Module):
def __init__(self, vocab_size, d_model, ssr_dim, n_heads, d_ff, num_adaptive_blocks,
dropout, seed_phrase, seed_number_str, num_sub_modules_per_block=3):
super().__init__()
self.d_model = d_model; self.ssr_dim = ssr_dim; self.seed_phrase = seed_phrase; self.seed_number_str = seed_number_str
self.num_adaptive_blocks = num_adaptive_blocks
self.debug_prints_enabled = True
if self.debug_prints_enabled: print(f"--- Initializing SWCKModel (V6.2) ---")
self.seed_parser = SeedParser(seed_phrase, seed_number_str, d_model, ssr_dim, num_adaptive_blocks, num_sub_modules_per_block)
self.seed_parser.debug_prints_enabled = self.debug_prints_enabled
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoder = PositionalEncoding(d_model, dropout)
self.adaptive_blocks = nn.ModuleList()
for i in range(num_adaptive_blocks):
block_config = self.seed_parser.get_block_config(i)
if block_config is None: raise ValueError(f"SWCKModel Error: Could not get seed config for block {i}")
new_block = AdaptiveBlock(d_model, ssr_dim, n_heads, d_ff, dropout, block_config, block_idx=i, num_sub_modules=num_sub_modules_per_block)
new_block.debug_prints_enabled = self.debug_prints_enabled
self.adaptive_blocks.append(new_block)
if self.debug_prints_enabled: print(f" SWCKModel: Added AdaptiveBlock {i} (V6.2)")
self.fc_out = nn.Linear(d_model, vocab_size)
# V6.2: Renamed for clarity
self.final_d_model_entropy_estimator = EntropyEstimator(d_model, name="Final_DMODEL_OutEntropy")
self.final_d_model_entropy_estimator.debug_prints_enabled = False
self._init_weights()
if self.debug_prints_enabled: print(f"--- SWCKModel V6.2 Initialized (Vocab: {vocab_size}, d_model: {d_model}, SSR_dim: {ssr_dim}, Blocks: {num_adaptive_blocks}x{num_sub_modules_per_block}sub) ---")
def _init_weights(self):
initrange = 0.1; self.embedding.weight.data.uniform_(-initrange, initrange)
self.fc_out.bias.data.zero_(); self.fc_out.weight.data.uniform_(-initrange, initrange)
def set_wiring_phase(self, active, current_epoch_num=0, total_wiring_epochs=1):
if self.debug_prints_enabled: print(f"SWCKModel: Setting wiring phase to {active} for all blocks (Epoch {current_epoch_num+1}/{total_wiring_epochs} of wiring if active).")
for block in self.adaptive_blocks: block.set_wiring_phase(active, current_epoch_num, total_wiring_epochs)
def forward(self, src_tokens, src_key_padding_mask=None):
if self.debug_prints_enabled:
print(f"\n--- SWCKModel V6.2 Forward Pass (Training: {self.training}) ---")
print(f" Input src_tokens: {src_tokens.shape}")
x = self.embedding(src_tokens) * math.sqrt(self.d_model)
x = self.pos_encoder(x)
if self.debug_prints_enabled: print(f" After Embedding & PosEnc, x: {x.shape}")
block_processed_output_entropies = []
block_x_output_entropies = [] # V6.2
current_block_gate_activations = []; current_block_gate_raw_params = []
fep_entropy_adj_factors = []; dynamic_target_entropies_used = []
ssr_befores_for_loss = []; ssr_afters_for_report = []; fep_delta_ssr_proposals_report = []
for i, block in enumerate(self.adaptive_blocks):
if self.debug_prints_enabled: print(f" Processing AdaptiveBlock {i}...")
x, blk_proc_out_ent, x_out_ent, current_gate_acts, raw_gate_params, fep_ent_adj_factor, dyn_target_ent, ssr_before, ssr_after, fep_delta_ssr = block(x, key_padding_mask=src_key_padding_mask, attn_mask=None)
block_processed_output_entropies.append(blk_proc_out_ent)
block_x_output_entropies.append(x_out_ent)
current_block_gate_activations.append(current_gate_acts)
current_block_gate_raw_params.append(raw_gate_params); fep_entropy_adj_factors.append(fep_ent_adj_factor)
dynamic_target_entropies_used.append(dyn_target_ent)
ssr_befores_for_loss.append(ssr_before)
ssr_afters_for_report.append(ssr_after)
fep_delta_ssr_proposals_report.append(fep_delta_ssr)
if self.debug_prints_enabled:
acts_str = [f'{act.item():.3f}' for act in current_gate_acts]
raw_str = [f'{rp.item():.3f}' for rp in raw_gate_params]
ssr_after_str = [f'{srp.item():.3f}' for srp in ssr_after[:min(3, self.ssr_dim)]] + (["..."] if self.ssr_dim > 3 else [])
fep_ds_str_report_inner = "N/A"
if torch.is_tensor(fep_delta_ssr) and fep_delta_ssr.numel() > 0 : fep_ds_str_report_inner = [f'{ds.item():.3f}' for ds in fep_delta_ssr[:min(3, self.ssr_dim)]] + (["..."] if self.ssr_dim > 3 else [])
fep_ent_adj_factor_str = f"{fep_ent_adj_factor.item():.3f}" if torch.is_tensor(fep_ent_adj_factor) else "N/A_Scalar"
dyn_target_str = f"{dyn_target_ent.item():.3f}" if torch.is_tensor(dyn_target_ent) else "N/A_Scalar"
print(f" Output x from Block {i}: {x.shape}, BlkProcOutEnt: {blk_proc_out_ent.item():.4f}, X_OutEnt: {x_out_ent.item():.4f}, SigmoidG: {acts_str}, RawG: {raw_str}")
print(f" Block {i} SSR_After (sample): {ssr_after_str}, FEP_DeltaSSR_Proposal (sample): {fep_ds_str_report_inner}, FEP_EntAdjFactor: {fep_ent_adj_factor_str}, DynTgtEnt: {dyn_target_str}")
logits = self.fc_out(x)
if self.debug_prints_enabled: print(f" Output logits: {logits.shape}")
final_active_mask = ~src_key_padding_mask if src_key_padding_mask is not None else None
overall_d_model_output_entropy = self.final_d_model_entropy_estimator(x.detach(), active_mask=final_active_mask) # Use renamed estimator
if self.debug_prints_enabled: print(f" Overall Final d_model Output Entropy (before fc_out): {overall_d_model_output_entropy.item():.4f}")
entropy_report = {
"block_processed_output_entropies": block_processed_output_entropies,
"block_x_output_entropies": block_x_output_entropies, # V6.2
"overall_d_model_output_entropy": overall_d_model_output_entropy, # V6.2
"current_block_gate_activations": current_block_gate_activations, "current_block_gate_params": current_block_gate_raw_params,
"fep_entropy_adj_factors": fep_entropy_adj_factors, "dynamic_target_entropies_used": dynamic_target_entropies_used,
"ssr_befores_for_loss": ssr_befores_for_loss,
"ssr_afters_for_report": ssr_afters_for_report,
"fep_delta_ssr_proposals": fep_delta_ssr_proposals_report
}
if self.debug_prints_enabled: print(f"--- SWCKModel V6.2 Forward Pass Complete ---")
return logits, entropy_report
|