Spaces:
Build error
Build error
File size: 9,390 Bytes
be66a58 7583b9e be66a58 9741079 be66a58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import deepsparse
import gradio as gr
from typing import Tuple, List
deepsparse.cpu.print_hardware_capability()
MODEL_ID = "mgoin/TinyStories-1M-deepsparse"
DESCRIPTION = f"""
# MPT Sparse Finetuned on GSM8k with DeepSparse
![NM Logo](https://files.slack.com/files-pri/T020WGRLR8A-F05TXD28BBK/neuralmagic-logo.png?pub_secret=54e8db19db)
Model ID: {MODEL_ID}
**π Experience the power of LLM mathematical reasoning** through our MPT sparse finetuned on the [GSM8K dataset](https://huggingface.co/datasets/gsm8k).
GSM8K, short for Grade School Math 8K, is a collection of 8.5K high-quality linguistically diverse grade school math word problems, designed to challenge question-answering systems with multi-step reasoning.
Observe the model's performance in deciphering complex math questions, such as "Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?" and offering detailed step-by-step solutions.
## Accelerated Inferenced on CPUs
The MPT model runs purely on CPU courtesy of software acceleration by DeepSparse. DeepSparse offers accelerated inference by taking advantage of the MPT model's sparse sparsity
hence delivering results fast.
![Speed](https://files.slack.com/files-pri/T020WGRLR8A-F0605DZ0B7G/image3.png?pub_secret=ab0f1d72b6)
"""
from huggingface_hub import snapshot_download
MODEL_ID = snapshot_download(repo_id=MODEL_ID, use_auth_token="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")
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 200
# Setup the engine
pipe = deepsparse.Pipeline.create(
task="text-generation",
model_path=MODEL_ID,
sequence_length=MAX_MAX_NEW_TOKENS,
prompt_sequence_length=16,
)
def clear_and_save_textbox(message: str) -> Tuple[str, str]:
return "", message
def display_input(
message: str, history: List[Tuple[str, str]]
) -> List[Tuple[str, str]]:
history.append((message, ""))
return history
def delete_prev_fn(history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
try:
message, _ = history.pop()
except IndexError:
message = ""
return history, message or ""
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown(DESCRIPTION)
with gr.Column():
gr.Markdown("""### MPT Sparse Finetuned Demo""")
with gr.Group():
chatbot = gr.Chatbot(label="Chatbot")
with gr.Row():
textbox = gr.Textbox(container=False,placeholder="Type a message...",scale=10,)
submit_button = gr.Button("Submit", variant="primary", scale=1, min_width=0)
with gr.Row():
retry_button = gr.Button("π Retry", variant="secondary")
undo_button = gr.Button("β©οΈ Undo", variant="secondary")
clear_button = gr.Button("ποΈ Clear", variant="secondary")
saved_input = gr.State()
gr.Examples(examples=[
"James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week?",
"Claire makes a 3 egg omelet every morning for breakfast. How many dozens of eggs will she eat in 4 weeks?",
"Gretchen has 110 coins. There are 30 more gold coins than silver coins. How many gold coins does Gretchen have?",],inputs=[textbox],)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=DEFAULT_MAX_NEW_TOKENS,
minimum=0,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
interactive=True,
info="The maximum numbers of new tokens",)
temperature = gr.Slider(
label="Temperature",
value=0.3,
minimum=0.05,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
)
top_p = gr.Slider(
label="Top-p (nucleus) sampling",
value=0.40,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
top_k = gr.Slider(
label="Top-k sampling",
value=20,
minimum=1,
maximum=100,
step=1,
interactive=True,
info="Sample from the top_k most likely tokens",
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
# Generation inference
def generate(
message,
history,
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int,
repetition_penalty: float,
):
generation_config = { "max_new_tokens": max_new_tokens,"temperature": temperature,"top_p": top_p,"top_k": top_k,"repetition_penalty": repetition_penalty,}
inference = pipe(sequences=message, streaming=True, **generation_config
history[-1][1] += message
for token in inference:
history[-1][1] += token.generations[0].text
yield history
print(pipe.timer_manager)
textbox.submit(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).success(
generate,
inputs=[
saved_input,
chatbot,
max_new_tokens,
temperature,
top_p,
top_k,
repetition_penalty,
],
outputs=[chatbot],
api_name=False,
)
submit_button.click(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).success(
generate,
inputs=[saved_input, chatbot, max_new_tokens, temperature],
outputs=[chatbot],
api_name=False,
)
retry_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
generate,
inputs=[saved_input, chatbot, max_new_tokens, temperature],
outputs=[chatbot],
api_name=False,
)
undo_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=lambda x: x,
inputs=[saved_input],
outputs=textbox,
api_name=False,
queue=False,
)
clear_button.click(
fn=lambda: ([], ""),
outputs=[chatbot, saved_input],
queue=False,
api_name=False,
)
demo.queue().launch()
|