File size: 17,590 Bytes
b72a08b
9570c1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608d2a8
 
9570c1b
f3d0762
70710af
608d2a8
9570c1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608d2a8
4385285
9570c1b
608d2a8
9570c1b
 
 
f3d0762
 
608d2a8
 
 
 
 
 
 
 
 
f3d0762
 
 
 
 
 
 
9570c1b
608d2a8
 
 
 
 
 
 
 
 
 
 
 
9570c1b
8da8931
c34b46a
 
 
8f2e109
9570c1b
aec79b4
 
 
95e1aa4
 
 
 
 
782c9a5
 
95e1aa4
 
 
aec79b4
9570c1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02bb0c5
9570c1b
608d2a8
 
 
 
 
 
 
 
 
 
 
 
9570c1b
 
 
608d2a8
 
 
 
 
 
 
 
 
 
 
 
9570c1b
 
 
 
 
 
 
608d2a8
 
9570c1b
 
 
 
 
608d2a8
 
 
 
 
 
 
 
 
 
 
 
9570c1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608d2a8
 
 
 
 
 
 
 
 
 
 
 
9570c1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608d2a8
 
 
 
 
 
 
 
 
 
 
 
 
9570c1b
 
 
 
bcaac11
9570c1b
608d2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
9570c1b
 
24bbf89
a71ad3a
24bbf89
4de9cc5
9570c1b
 
2ea9bc0
fc991f2
9570c1b
 
 
 
 
608d2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9570c1b
608d2a8
 
9570c1b
 
 
 
 
 
 
 
608d2a8
 
9570c1b
 
608d2a8
9570c1b
 
 
 
 
 
 
608d2a8
9570c1b
 
 
 
 
571080e
608d2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9570c1b
 
608d2a8
9570c1b
 
608d2a8
fc991f2
 
 
608d2a8
571080e
 
9570c1b
 
 
608d2a8
 
9570c1b
 
 
 
 
 
608d2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9570c1b
5dc48c7
 
cd95449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e35ca6f
c20d690
1729c17
 
 
 
cd95449
 
 
9570c1b
a2ad006
 
9570c1b
42bb9c4
13d2f72
42bb9c4
a2ad006
 
95797a1
42bb9c4
99cbb54
608d2a8
 
 
571080e
 
 
 
5dc48c7
 
42bb9c4
2469e6e
5dc48c7
 
571080e
 
 
5dc48c7
571080e
9570c1b
608d2a8
 
 
9570c1b
608d2a8
 
 
 
 
 
9570c1b
2bf7ca7
 
 
608d2a8
9570c1b
608d2a8
 
9570c1b
608d2a8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# Importing required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import librosa
import time
from matplotlib import cm
import soundfile as sf
import torch
import torch.nn as nn
from PIL import Image
import torch.nn.functional as F
import streamlit as st
import tempfile
import noisereduce as nr
import pyaudio
import wave
import whisper
from transformers import (
    HubertForSequenceClassification,
    Wav2Vec2FeatureExtractor,
    AutoModel,
    AutoTokenizer,
    HubertForSequenceClassification,
    AutoModelForCausalLM
)
from streamlit.components.v1 import html

# Mapping Hubert model's output to GPT input
emo2promptMapping = {
'Angry':'ANGRY', 
'Calm':'CALM',
'Disgust':'DISGUSTED', 
'Fearful':'FEARFUL',
'Happy': 'HAPPY', 
'Sad': 'SAD',
'Surprised': 'SURPRISED'
}

# Check if GPU (cuda) is available
if torch.cuda.is_available():
    device = torch.device('cuda')
else:
    device = torch.device('cpu')

#Load speech to text model
speech_model = whisper.load_model("base")

#Define Labels related info
num_labels=7
label_mapping = ['angry', 'calm', 'disgust', 'fearful', 'happy', 'sad', 'surprised']

# Define the model's name from the Hugging Face model hub
model_weights_path = "https://huggingface.co/netgvarun2005/MultiModalBertHubert/resolve/main/MultiModal_model_state_dict.pth"

# Model name initialization
model_id = "facebook/hubert-base-ls960"
bert_model_name = "bert-base-uncased"


def open_page(url):
    """ 
    Function to invoke javascript code to redirect to an external URL.

    Parameters: 
        External URL to redirect to.

    Returns: 
        None
    """ 
    open_script= """
        <script type="text/javascript">
            window.open('%s', '_blank').focus();
        </script>
    """ % (url)
    html(open_script)

def config():
    """
    Configure the Streamlit application settings and styles.

    This function sets the page configuration, including the title and icon, adds custom CSS styles
    for specific elements, and defines a custom style for the application title.

    Parameters:
        None

    Returns:
        None
    """
    # Loading Image using PIL
    im = Image.open('./config/icon.png')
    
    # Set the page configuration with the title and icon
    st.set_page_config(page_title="Virtual Therapist", page_icon=im)

    # Add custom CSS styles
    st.markdown("""
        <style>
        .mobile-screen {
        border: 2px solid black;
        display: flex;
        flex-direction: column;
        align-items: center;
        justify-content: center; /* Align content in the middle */
        height: 20vh; /* Reduce the height of the box */
        padding: 20px; /* Reduce padding */
        border-radius: 10px;
    }
    </style>
    """, unsafe_allow_html=True)
    # Define a custom style for your title
    title_style = """
    <style>
        h1 {
            font-family: 'Comic Sans MS', cursive, sans-serif;
            color: blue;
            font-size: 22px; /* Add font size here */
        }
    </style>
    """

    # Display the title with the custom style
    st.markdown(title_style, unsafe_allow_html=True)
    st.markdown("# WELCOME! HOW ARE YOU FEELING? PLEASE RECORD AN AUDIO!", unsafe_allow_html=True)
    st.markdown("# BASED ON YOUR EMOTIONAL STATE, I WILL SUGGEST SOME TIPS!", unsafe_allow_html=True)
    
    return


class MultimodalModel(nn.Module):
    '''
    Custom PyTorch model that takes as input both the audio features and the text embeddings, and concatenates the last hidden states from the Hubert and BERT models.
    '''
    def __init__(self, bert_model_name, num_labels):
        super().__init__()
        self.hubert = HubertForSequenceClassification.from_pretrained("netgvarun2005/HubertStandaloneEmoDetector", num_labels=num_labels).hubert
        self.bert = AutoModel.from_pretrained(bert_model_name)
        self.classifier = nn.Linear(self.hubert.config.hidden_size + self.bert.config.hidden_size, num_labels)

    def forward(self, input_values, text):
        hubert_output = self.hubert(input_values).last_hidden_state

        bert_output = self.bert(text).last_hidden_state

        # Apply mean pooling along the sequence dimension
        hubert_output = hubert_output.mean(dim=1)
        bert_output = bert_output.mean(dim=1)

        concat_output = torch.cat((hubert_output, bert_output), dim=-1)
        logits = self.classifier(concat_output)
        return logits

@st.cache_resource(show_spinner=False)
def speechtoText(wavfile):
    """
    Convert speech from a WAV audio file to text using a pre-trained Whisper ASR model.

    This function takes a WAV audio file as input and utilizes a pre-trained Whisper ASR model
    to transcribe the speech into text.

    Parameters:
        wavfile (str): The file path to the input WAV audio file.

    Returns:
        str: The transcribed text from the speech in the audio file.
    """
    return speech_model.transcribe(wavfile)['text']

def resampleaudio(wavfile):
    """
    Resample an audio file to a target sample rate and save it back to the same file.

    This function loads an audio file in WAV format, resamples it to the specified target sample rate,
    and then saves the resampled audio back to the same file, overwriting the original content.

    Parameters:
        wavfile (str): The file path to the input WAV audio file.

    Returns:
        str: The file path to the resampled WAV audio file.
    """
    audio, sr = librosa.load(wavfile, sr=None)

    # Set the desired target sample rate
    target_sample_rate = 16000

    # Resample the audio to the target sample rate
    resampled_audio = librosa.resample(audio, orig_sr=sr, target_sr=target_sample_rate)
   
    # Write to the original file 
    sf.write(wavfile,resampled_audio, target_sample_rate)
    return wavfile


def noiseReduction(wavfile):
    """
    Apply noise reduction to an audio file and save the denoised audio back to the same file.

    This function loads an audio file in WAV format, performs noise reduction using the specified parameters,
    and then saves the denoised audio back to the same file, overwriting the original content.

    Parameters:
        wavfile (str): The file path to the input WAV audio file.

    Returns:
        str: The file path to the denoised WAV audio file.
    """
    audio, sr = librosa.load(wavfile, sr=None)

    # Set parameters for noise reduction
    n_fft = 2048  # FFT window size
    hop_length = 512  # Hop length for STFT

    # Perform noise reduction
    reduced_noise = nr.reduce_noise(y=audio, sr=sr, n_fft=n_fft, hop_length=hop_length)

    # Save the denoised audio to a new WAV file
    sf.write(wavfile,reduced_noise, sr)
    return wavfile


def removeSilence(wavfile):
    """
    Remove silence from an audio file and save the trimmed audio back to the same file.

    This function loads an audio file in WAV format, identifies and removes silence based on a specified threshold,
    and then saves the trimmed audio back to the same file, overwriting the original content.

    Parameters:
        wavfile (str): The file path to the input WAV audio file.

    Returns:
        str: The file path to the audio file with silence removed.
    """
    # Load the audio file
    audio_file = wavfile

    audio, sr = librosa.load(audio_file, sr=None)

    # Split the audio file based on silence
    clips = librosa.effects.split(audio, top_db=40)

    # Combine the audio clips
    non_silent_audio = []
    for start, end in clips:
        non_silent_audio.extend(audio[start:end])

    # Save the audio without silence to a new WAV file
    sf.write(wavfile,non_silent_audio, sr)
    return wavfile

def preprocessWavFile(wavfile):
    """
    Perform a series of audio preprocessing steps on a WAV file.

    This function takes an input WAV audio file, applies a series of preprocessing steps,
    including resampling, noise reduction, and silence removal, and returns the path to the
    preprocessed audio file.

    Parameters:
        wavfile (str): The file path to the input WAV audio file.

    Returns:
        str: The file path to the preprocessed WAV audio file.
    """
    resampledwavfile = resampleaudio(wavfile)
    denoised_file = noiseReduction(resampledwavfile)
    return removeSilence(denoised_file)

@st.cache_resource()
def load_model():
    """
    Load and configure various models and tokenizers for a multi-modal application.

    This function loads a multi-modal model and its weights from a specified source,
    initializes tokenizers for the model and an additional language model, and returns
    these components for use in a multi-modal application.

    Returns:
        tuple: A tuple containing the following components:
            - multiModel (MultimodalModel): The multi-modal model.
            - tokenizer (AutoTokenizer): Tokenizer for the multi-modal model.
            - model_gpt (AutoModelForCausalLM): Language model for text generation.
            - tokenizer_gpt (AutoTokenizer): Tokenizer for the language model.
    """
    # Load the model
    multiModel = MultimodalModel(bert_model_name, num_labels)

    # Load the model weights and tokenizer directly from Hugging Face Spaces
    multiModel.load_state_dict(torch.hub.load_state_dict_from_url(model_weights_path, map_location=device), strict=False)
    tokenizer = AutoTokenizer.from_pretrained("netgvarun2005/MultiModalBertHubertTokenizer") 

    # GenAI
    tokenizer_gpt = AutoTokenizer.from_pretrained("netgvarun2005/GPTTherapistDeepSpeedTokenizer", pad_token='<|pad|>',bos_token='<|startoftext|>',eos_token='<|endoftext|>')
    model_gpt = AutoModelForCausalLM.from_pretrained("netgvarun2005/GPTTherapistDeepSpeedModel")
   
    return multiModel,tokenizer,model_gpt,tokenizer_gpt


def predict(audio_array,multiModal_model,key,tokenizer,text):    
    """
    Perform multimodal prediction using an audio feature array and text input.

    This function takes an audio feature array and text as input, tokenizes the text,
    extracts audio features, and uses a multi-modal model to predict a class label based on
    the combined audio and text inputs.

    Parameters:
        audio_array (numpy.ndarray): A numpy array containing audio features.
        multiModal_model: The multi-modal model for prediction.
        key: A key for identifying the model (e.g., model_id).
        tokenizer: Tokenizer for processing the text input.
        text (str): The input text for prediction.

    Returns:
        str: The predicted class label.
    """
    # Tokenize the input text
    input_text = tokenizer(text, return_tensors="pt", truncation=True, padding=True)

    # Extract audio features using a feature extractor
    feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_id)

    input_audio = feature_extractor(
        raw_speech=audio_array,
        sampling_rate=16000,
        padding=True,
        return_tensors="pt"
    )

    # Make predictions with the multi-modal model
    logits = multiModal_model(input_audio["input_values"], input_text["input_ids"])

    # Calculate class probabilities
    probabilities = F.softmax(logits, dim=1).to_dense()
    _, predicted = torch.max(probabilities, 1)
    class_prob = probabilities.tolist()
    class_prob = class_prob[0]
    class_prob = [round(value, 2) for value in class_prob]
    maxVal = np.argmax(class_prob)

    # Display the final transcript and handle inference issues
    if label_mapping[predicted] == "":
        st.write("Inference impossible, a problem occurred with your audio or your parameters, we apologize :(")

    return (label_mapping[maxVal]).capitalize()

def GenerateText(emo,gpt_tokenizer,gpt_model,t_val,t_k,t_p):
    """
    Generate text based on a given emotion using a GPT-2 model.

    This function takes an emotion as input, generates text based on the emotion prompt,
    and displays multiple generated text samples.

    Parameters:
        emo (str): The emotion for which text should be generated.
        gpt_tokenizer: Tokenizer for processing the GPT-2 model input.
        gpt_model: The GPT-2 model for text generation.

    Returns:
        None
    """
    # Create a prompt based on the input emotion
    prompt  = f'<startoftext>{emo2promptMapping[emo]}:' 

    # Tokenize the prompt and convert it to input tensors
    generated = gpt_tokenizer(prompt, return_tensors="pt").input_ids

    # Move the generated tensor and GPT model to the specified device (e.g., GPU)
    generated = generated.to(device)
    gpt_model.to(device)

    # Generate multiple text samples based on the prompt
    sample_outputs = gpt_model.generate(generated, do_sample=True, top_k=t_k,
                                    max_length=30, top_p=t_p, temperature=t_val, num_return_sequences=10)#,no_repeat_ngram_size=1)

    # Extract and split the generated text into words
    outputs = set([gpt_tokenizer.decode(sample_output, skip_special_tokens=True).split(':')[-1] for sample_output in sample_outputs])        

    # Display the generated text samples with a delay for readability
    for i, sample_output in enumerate(outputs):
        st.write(f"<span style='font-size: 18px; font-family: Arial, sans-serif; font-weight: bold;'>{i+1}: {sample_output}</span>", unsafe_allow_html=True)
        time.sleep(0.5)        


def process_file(ser_model,tokenizer,gpt_model,gpt_tokenizer):
    """
    Process and analyze an uploaded WAV file, generating transcriptions and helpful tips.

    This function allows users to upload a WAV audio file, processes the file to obtain transcriptions,
    predicts the user's emotional state, and displays helpful tips based on the predicted emotion.

    Parameters:
        ser_model: The emotion analysis model for predicting emotions.
        tokenizer: Tokenizer for processing text inputs.
        gpt_model: The GPT-3 model for generating text.
        gpt_tokenizer: Tokenizer for processing GPT-3 model inputs.

    Returns:
        None
    """
    emo = ""
    button_label1 = "Show Helpful Tips (More Creative)"
    button_label2 = "Show Helpful Tips (More Balanced)"
    uploaded_file = st.file_uploader("Upload your file! It should be .wav", type=["wav"])

    if uploaded_file is not None:
        # Read the content of the uploaded file
        audio_content = uploaded_file.read()
        # Display audio file
        st.audio(audio_content, format="audio/wav")

        # Save the audio content to a temporary file
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
            temp_filename = temp_file.name
            temp_file.write(audio_content)

            try:
                audio_array, sr = librosa.load(preprocessWavFile(temp_filename), sr=None)
                #with st.spinner(st.markdown("<p style='font-size: 16px; font-weight: bold;'>Generating transcriptions in the side pane! Please wait...</p>", unsafe_allow_html=True)):
                with st.spinner("Generating transcriptions in the side pane.Please wait..."):
                    transcription = speechtoText(temp_filename)
                    emo = predict(audio_array,ser_model,2,tokenizer,transcription)
                    # Display the transcription in a textbox
                    st.sidebar.text_area("Transcription", transcription, height=25)      
            except:
                st.write("Inference impossible, a problem occurred with your audio or your parameters, we apologize :(")
  

            txt = f"You seem to be <b>{(emo2promptMapping[emo]).capitalize()}!</b>\n Click on 'Show Helpful Tips' button to proceed further."
            st.markdown(f"<div class='mobile-screen' style='font-size: 24px;'>{txt} </div>", unsafe_allow_html=True)

            # Create two columns for the buttons
            col1, col2 = st.columns([1,1])

            # Store the value of emo in the session state
            st.session_state.emo = emo

            if col1.button(button_label1):
                with st.spinner("Generating tips (it may take upto 2-3 mins). Please wait..."):
                    # Retrieve prompt from the emotion
                    emo = st.session_state.emo
                    # Call the function for GENAI
                    temp=0.9
                    top_k=50
                    top_p=0.8
                    GenerateText(emo,gpt_tokenizer,gpt_model,temp,top_k,top_p)


            if col2.button(button_label2):
                with st.spinner("Generating tips (it may take upto 2-3 mins). Please wait..."):
                    # Retrieve prompt from the emotion
                    emo = st.session_state.emo
                    temp=0.2
                    top_k=90
                    top_p=0.95
                    # Call the function for GENAI
                    GenerateText(emo,gpt_tokenizer,gpt_model,temp,top_k,top_p)

def main():
    """
    Main function for running a Streamlit-based multi-modal text generation application.

    This function configures the Streamlit application, loads necessary models and tokenizers,
    and allows users to process audio files to generate transcriptions and helpful tips.

    Returns:
        None
    """
    config()
    if st.sidebar.button("**Open External Audio Recorder!**"):
        open_page("https://voice-recorder-online.com/")

    # Load the models, and tokenizers
    ser_model,tokenizer,gpt_model,gpt_tokenizer = load_model()

    # Process and analyze uploaded audio files
    process_file(ser_model,tokenizer,gpt_model,gpt_tokenizer)


if __name__ == '__main__':
    main()