Spaces:
Sleeping
Sleeping
File size: 17,590 Bytes
b72a08b 9570c1b 608d2a8 9570c1b f3d0762 70710af 608d2a8 9570c1b 608d2a8 4385285 9570c1b 608d2a8 9570c1b f3d0762 608d2a8 f3d0762 9570c1b 608d2a8 9570c1b 8da8931 c34b46a 8f2e109 9570c1b aec79b4 95e1aa4 782c9a5 95e1aa4 aec79b4 9570c1b 02bb0c5 9570c1b 608d2a8 9570c1b 608d2a8 9570c1b 608d2a8 9570c1b 608d2a8 9570c1b 608d2a8 9570c1b 608d2a8 9570c1b bcaac11 9570c1b 608d2a8 9570c1b 24bbf89 a71ad3a 24bbf89 4de9cc5 9570c1b 2ea9bc0 fc991f2 9570c1b 608d2a8 9570c1b 608d2a8 9570c1b 608d2a8 9570c1b 608d2a8 9570c1b 608d2a8 9570c1b 571080e 608d2a8 9570c1b 608d2a8 9570c1b 608d2a8 fc991f2 608d2a8 571080e 9570c1b 608d2a8 9570c1b 608d2a8 9570c1b 5dc48c7 cd95449 e35ca6f c20d690 1729c17 cd95449 9570c1b a2ad006 9570c1b 42bb9c4 13d2f72 42bb9c4 a2ad006 95797a1 42bb9c4 99cbb54 608d2a8 571080e 5dc48c7 42bb9c4 2469e6e 5dc48c7 571080e 5dc48c7 571080e 9570c1b 608d2a8 9570c1b 608d2a8 9570c1b 2bf7ca7 608d2a8 9570c1b 608d2a8 9570c1b 608d2a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
# Importing required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import librosa
import time
from matplotlib import cm
import soundfile as sf
import torch
import torch.nn as nn
from PIL import Image
import torch.nn.functional as F
import streamlit as st
import tempfile
import noisereduce as nr
import pyaudio
import wave
import whisper
from transformers import (
HubertForSequenceClassification,
Wav2Vec2FeatureExtractor,
AutoModel,
AutoTokenizer,
HubertForSequenceClassification,
AutoModelForCausalLM
)
from streamlit.components.v1 import html
# Mapping Hubert model's output to GPT input
emo2promptMapping = {
'Angry':'ANGRY',
'Calm':'CALM',
'Disgust':'DISGUSTED',
'Fearful':'FEARFUL',
'Happy': 'HAPPY',
'Sad': 'SAD',
'Surprised': 'SURPRISED'
}
# Check if GPU (cuda) is available
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
#Load speech to text model
speech_model = whisper.load_model("base")
#Define Labels related info
num_labels=7
label_mapping = ['angry', 'calm', 'disgust', 'fearful', 'happy', 'sad', 'surprised']
# Define the model's name from the Hugging Face model hub
model_weights_path = "https://huggingface.co/netgvarun2005/MultiModalBertHubert/resolve/main/MultiModal_model_state_dict.pth"
# Model name initialization
model_id = "facebook/hubert-base-ls960"
bert_model_name = "bert-base-uncased"
def open_page(url):
"""
Function to invoke javascript code to redirect to an external URL.
Parameters:
External URL to redirect to.
Returns:
None
"""
open_script= """
<script type="text/javascript">
window.open('%s', '_blank').focus();
</script>
""" % (url)
html(open_script)
def config():
"""
Configure the Streamlit application settings and styles.
This function sets the page configuration, including the title and icon, adds custom CSS styles
for specific elements, and defines a custom style for the application title.
Parameters:
None
Returns:
None
"""
# Loading Image using PIL
im = Image.open('./config/icon.png')
# Set the page configuration with the title and icon
st.set_page_config(page_title="Virtual Therapist", page_icon=im)
# Add custom CSS styles
st.markdown("""
<style>
.mobile-screen {
border: 2px solid black;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center; /* Align content in the middle */
height: 20vh; /* Reduce the height of the box */
padding: 20px; /* Reduce padding */
border-radius: 10px;
}
</style>
""", unsafe_allow_html=True)
# Define a custom style for your title
title_style = """
<style>
h1 {
font-family: 'Comic Sans MS', cursive, sans-serif;
color: blue;
font-size: 22px; /* Add font size here */
}
</style>
"""
# Display the title with the custom style
st.markdown(title_style, unsafe_allow_html=True)
st.markdown("# WELCOME! HOW ARE YOU FEELING? PLEASE RECORD AN AUDIO!", unsafe_allow_html=True)
st.markdown("# BASED ON YOUR EMOTIONAL STATE, I WILL SUGGEST SOME TIPS!", unsafe_allow_html=True)
return
class MultimodalModel(nn.Module):
'''
Custom PyTorch model that takes as input both the audio features and the text embeddings, and concatenates the last hidden states from the Hubert and BERT models.
'''
def __init__(self, bert_model_name, num_labels):
super().__init__()
self.hubert = HubertForSequenceClassification.from_pretrained("netgvarun2005/HubertStandaloneEmoDetector", num_labels=num_labels).hubert
self.bert = AutoModel.from_pretrained(bert_model_name)
self.classifier = nn.Linear(self.hubert.config.hidden_size + self.bert.config.hidden_size, num_labels)
def forward(self, input_values, text):
hubert_output = self.hubert(input_values).last_hidden_state
bert_output = self.bert(text).last_hidden_state
# Apply mean pooling along the sequence dimension
hubert_output = hubert_output.mean(dim=1)
bert_output = bert_output.mean(dim=1)
concat_output = torch.cat((hubert_output, bert_output), dim=-1)
logits = self.classifier(concat_output)
return logits
@st.cache_resource(show_spinner=False)
def speechtoText(wavfile):
"""
Convert speech from a WAV audio file to text using a pre-trained Whisper ASR model.
This function takes a WAV audio file as input and utilizes a pre-trained Whisper ASR model
to transcribe the speech into text.
Parameters:
wavfile (str): The file path to the input WAV audio file.
Returns:
str: The transcribed text from the speech in the audio file.
"""
return speech_model.transcribe(wavfile)['text']
def resampleaudio(wavfile):
"""
Resample an audio file to a target sample rate and save it back to the same file.
This function loads an audio file in WAV format, resamples it to the specified target sample rate,
and then saves the resampled audio back to the same file, overwriting the original content.
Parameters:
wavfile (str): The file path to the input WAV audio file.
Returns:
str: The file path to the resampled WAV audio file.
"""
audio, sr = librosa.load(wavfile, sr=None)
# Set the desired target sample rate
target_sample_rate = 16000
# Resample the audio to the target sample rate
resampled_audio = librosa.resample(audio, orig_sr=sr, target_sr=target_sample_rate)
# Write to the original file
sf.write(wavfile,resampled_audio, target_sample_rate)
return wavfile
def noiseReduction(wavfile):
"""
Apply noise reduction to an audio file and save the denoised audio back to the same file.
This function loads an audio file in WAV format, performs noise reduction using the specified parameters,
and then saves the denoised audio back to the same file, overwriting the original content.
Parameters:
wavfile (str): The file path to the input WAV audio file.
Returns:
str: The file path to the denoised WAV audio file.
"""
audio, sr = librosa.load(wavfile, sr=None)
# Set parameters for noise reduction
n_fft = 2048 # FFT window size
hop_length = 512 # Hop length for STFT
# Perform noise reduction
reduced_noise = nr.reduce_noise(y=audio, sr=sr, n_fft=n_fft, hop_length=hop_length)
# Save the denoised audio to a new WAV file
sf.write(wavfile,reduced_noise, sr)
return wavfile
def removeSilence(wavfile):
"""
Remove silence from an audio file and save the trimmed audio back to the same file.
This function loads an audio file in WAV format, identifies and removes silence based on a specified threshold,
and then saves the trimmed audio back to the same file, overwriting the original content.
Parameters:
wavfile (str): The file path to the input WAV audio file.
Returns:
str: The file path to the audio file with silence removed.
"""
# Load the audio file
audio_file = wavfile
audio, sr = librosa.load(audio_file, sr=None)
# Split the audio file based on silence
clips = librosa.effects.split(audio, top_db=40)
# Combine the audio clips
non_silent_audio = []
for start, end in clips:
non_silent_audio.extend(audio[start:end])
# Save the audio without silence to a new WAV file
sf.write(wavfile,non_silent_audio, sr)
return wavfile
def preprocessWavFile(wavfile):
"""
Perform a series of audio preprocessing steps on a WAV file.
This function takes an input WAV audio file, applies a series of preprocessing steps,
including resampling, noise reduction, and silence removal, and returns the path to the
preprocessed audio file.
Parameters:
wavfile (str): The file path to the input WAV audio file.
Returns:
str: The file path to the preprocessed WAV audio file.
"""
resampledwavfile = resampleaudio(wavfile)
denoised_file = noiseReduction(resampledwavfile)
return removeSilence(denoised_file)
@st.cache_resource()
def load_model():
"""
Load and configure various models and tokenizers for a multi-modal application.
This function loads a multi-modal model and its weights from a specified source,
initializes tokenizers for the model and an additional language model, and returns
these components for use in a multi-modal application.
Returns:
tuple: A tuple containing the following components:
- multiModel (MultimodalModel): The multi-modal model.
- tokenizer (AutoTokenizer): Tokenizer for the multi-modal model.
- model_gpt (AutoModelForCausalLM): Language model for text generation.
- tokenizer_gpt (AutoTokenizer): Tokenizer for the language model.
"""
# Load the model
multiModel = MultimodalModel(bert_model_name, num_labels)
# Load the model weights and tokenizer directly from Hugging Face Spaces
multiModel.load_state_dict(torch.hub.load_state_dict_from_url(model_weights_path, map_location=device), strict=False)
tokenizer = AutoTokenizer.from_pretrained("netgvarun2005/MultiModalBertHubertTokenizer")
# GenAI
tokenizer_gpt = AutoTokenizer.from_pretrained("netgvarun2005/GPTTherapistDeepSpeedTokenizer", pad_token='<|pad|>',bos_token='<|startoftext|>',eos_token='<|endoftext|>')
model_gpt = AutoModelForCausalLM.from_pretrained("netgvarun2005/GPTTherapistDeepSpeedModel")
return multiModel,tokenizer,model_gpt,tokenizer_gpt
def predict(audio_array,multiModal_model,key,tokenizer,text):
"""
Perform multimodal prediction using an audio feature array and text input.
This function takes an audio feature array and text as input, tokenizes the text,
extracts audio features, and uses a multi-modal model to predict a class label based on
the combined audio and text inputs.
Parameters:
audio_array (numpy.ndarray): A numpy array containing audio features.
multiModal_model: The multi-modal model for prediction.
key: A key for identifying the model (e.g., model_id).
tokenizer: Tokenizer for processing the text input.
text (str): The input text for prediction.
Returns:
str: The predicted class label.
"""
# Tokenize the input text
input_text = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
# Extract audio features using a feature extractor
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_id)
input_audio = feature_extractor(
raw_speech=audio_array,
sampling_rate=16000,
padding=True,
return_tensors="pt"
)
# Make predictions with the multi-modal model
logits = multiModal_model(input_audio["input_values"], input_text["input_ids"])
# Calculate class probabilities
probabilities = F.softmax(logits, dim=1).to_dense()
_, predicted = torch.max(probabilities, 1)
class_prob = probabilities.tolist()
class_prob = class_prob[0]
class_prob = [round(value, 2) for value in class_prob]
maxVal = np.argmax(class_prob)
# Display the final transcript and handle inference issues
if label_mapping[predicted] == "":
st.write("Inference impossible, a problem occurred with your audio or your parameters, we apologize :(")
return (label_mapping[maxVal]).capitalize()
def GenerateText(emo,gpt_tokenizer,gpt_model,t_val,t_k,t_p):
"""
Generate text based on a given emotion using a GPT-2 model.
This function takes an emotion as input, generates text based on the emotion prompt,
and displays multiple generated text samples.
Parameters:
emo (str): The emotion for which text should be generated.
gpt_tokenizer: Tokenizer for processing the GPT-2 model input.
gpt_model: The GPT-2 model for text generation.
Returns:
None
"""
# Create a prompt based on the input emotion
prompt = f'<startoftext>{emo2promptMapping[emo]}:'
# Tokenize the prompt and convert it to input tensors
generated = gpt_tokenizer(prompt, return_tensors="pt").input_ids
# Move the generated tensor and GPT model to the specified device (e.g., GPU)
generated = generated.to(device)
gpt_model.to(device)
# Generate multiple text samples based on the prompt
sample_outputs = gpt_model.generate(generated, do_sample=True, top_k=t_k,
max_length=30, top_p=t_p, temperature=t_val, num_return_sequences=10)#,no_repeat_ngram_size=1)
# Extract and split the generated text into words
outputs = set([gpt_tokenizer.decode(sample_output, skip_special_tokens=True).split(':')[-1] for sample_output in sample_outputs])
# Display the generated text samples with a delay for readability
for i, sample_output in enumerate(outputs):
st.write(f"<span style='font-size: 18px; font-family: Arial, sans-serif; font-weight: bold;'>{i+1}: {sample_output}</span>", unsafe_allow_html=True)
time.sleep(0.5)
def process_file(ser_model,tokenizer,gpt_model,gpt_tokenizer):
"""
Process and analyze an uploaded WAV file, generating transcriptions and helpful tips.
This function allows users to upload a WAV audio file, processes the file to obtain transcriptions,
predicts the user's emotional state, and displays helpful tips based on the predicted emotion.
Parameters:
ser_model: The emotion analysis model for predicting emotions.
tokenizer: Tokenizer for processing text inputs.
gpt_model: The GPT-3 model for generating text.
gpt_tokenizer: Tokenizer for processing GPT-3 model inputs.
Returns:
None
"""
emo = ""
button_label1 = "Show Helpful Tips (More Creative)"
button_label2 = "Show Helpful Tips (More Balanced)"
uploaded_file = st.file_uploader("Upload your file! It should be .wav", type=["wav"])
if uploaded_file is not None:
# Read the content of the uploaded file
audio_content = uploaded_file.read()
# Display audio file
st.audio(audio_content, format="audio/wav")
# Save the audio content to a temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
temp_filename = temp_file.name
temp_file.write(audio_content)
try:
audio_array, sr = librosa.load(preprocessWavFile(temp_filename), sr=None)
#with st.spinner(st.markdown("<p style='font-size: 16px; font-weight: bold;'>Generating transcriptions in the side pane! Please wait...</p>", unsafe_allow_html=True)):
with st.spinner("Generating transcriptions in the side pane.Please wait..."):
transcription = speechtoText(temp_filename)
emo = predict(audio_array,ser_model,2,tokenizer,transcription)
# Display the transcription in a textbox
st.sidebar.text_area("Transcription", transcription, height=25)
except:
st.write("Inference impossible, a problem occurred with your audio or your parameters, we apologize :(")
txt = f"You seem to be <b>{(emo2promptMapping[emo]).capitalize()}!</b>\n Click on 'Show Helpful Tips' button to proceed further."
st.markdown(f"<div class='mobile-screen' style='font-size: 24px;'>{txt} </div>", unsafe_allow_html=True)
# Create two columns for the buttons
col1, col2 = st.columns([1,1])
# Store the value of emo in the session state
st.session_state.emo = emo
if col1.button(button_label1):
with st.spinner("Generating tips (it may take upto 2-3 mins). Please wait..."):
# Retrieve prompt from the emotion
emo = st.session_state.emo
# Call the function for GENAI
temp=0.9
top_k=50
top_p=0.8
GenerateText(emo,gpt_tokenizer,gpt_model,temp,top_k,top_p)
if col2.button(button_label2):
with st.spinner("Generating tips (it may take upto 2-3 mins). Please wait..."):
# Retrieve prompt from the emotion
emo = st.session_state.emo
temp=0.2
top_k=90
top_p=0.95
# Call the function for GENAI
GenerateText(emo,gpt_tokenizer,gpt_model,temp,top_k,top_p)
def main():
"""
Main function for running a Streamlit-based multi-modal text generation application.
This function configures the Streamlit application, loads necessary models and tokenizers,
and allows users to process audio files to generate transcriptions and helpful tips.
Returns:
None
"""
config()
if st.sidebar.button("**Open External Audio Recorder!**"):
open_page("https://voice-recorder-online.com/")
# Load the models, and tokenizers
ser_model,tokenizer,gpt_model,gpt_tokenizer = load_model()
# Process and analyze uploaded audio files
process_file(ser_model,tokenizer,gpt_model,gpt_tokenizer)
if __name__ == '__main__':
main()
|