File size: 2,596 Bytes
ef2ec49
 
 
 
 
3764041
 
ef2ec49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3764041
 
 
 
 
 
 
ef2ec49
3764041
 
 
ef2ec49
 
 
3764041
ef2ec49
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import streamlit as st
import yfinance as yf
import plotly.graph_objects as go
import pandas as pd

def fetch_data(ticker, start_date, end_date):
    data = yf.download(ticker, start=start_date, end=end_date)
    data['MA Fast'] = data['Close'].rolling(window=5).mean()
    data['MA Slow'] = data['Close'].rolling(window=10).mean()
    data['Upper Band'], data['Lower Band'] = data['Close'].rolling(20).mean() + 2*data['Close'].rolling(20).std(), data['Close'].rolling(20).mean() - 2*data['Close'].rolling(20).std()
    return data

def plot_data(data):
    fig = go.Figure()
    # Adding Candles
    fig.add_trace(go.Candlestick(x=data.index, open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Candlesticks'))
    # Adding MA lines
    fig.add_trace(go.Scatter(x=data.index, y=data['MA Fast'], line=dict(color='blue', width=1.5), name='MA Fast'))
    fig.add_trace(go.Scatter(x=data.index, y=data['MA Slow'], line=dict(color='red', width=1.5), name='MA Slow'))
    # Adding Bollinger Bands
    fig.add_trace(go.Scatter(x=data.index, y=data['Upper Band'], line=dict(color='green', width=1), name='Upper Band'))
    fig.add_trace(go.Scatter(x=data.index, y=data['Lower Band'], line=dict(color='green', width=1), name='Lower Band'))

    # Identify buy and sell signals
    buys = data[(data['Close'] > data['Lower Band']) & (data['Close'] < data['MA Slow'])]
    sells = data[(data['Close'] < data['Upper Band']) & (data['Close'] > data['MA Fast'])]

    fig.add_trace(go.Scatter(x=buys.index, y=buys['Close'], mode='markers', marker=dict(color='yellow', size=10), name='Buy Signal'))
    fig.add_trace(go.Scatter(x=sells.index, y=sells['Close'], mode='markers', marker=dict(color='purple', size=10), name='Sell Signal'))

    return fig

# Streamlit user interface
st.title("BBMA Re-entry Strategy Analysis")
st.markdown("""
This application allows users to analyze the BBMA (Bollinger Bands Moving Average) Re-entry Strategy for selected stocks. 
Enter the stock ticker, choose a start and end date, and hit the 'Analyze' button to view the strategy's buy and sell signals overlaid on the price chart.
""")

st.sidebar.header('User Input Parameters')
ticker = st.sidebar.text_input('Enter ticker symbol', value='AAPL')
start_date = st.sidebar.date_input('Start Date', value=pd.to_datetime('2020-01-01'))
end_date = st.sidebar.date_input('End Date', value=pd.to_datetime('today'))

button = st.sidebar.button('Analyze')

if button:
    data = fetch_data(ticker, start_date, end_date)
    fig = plot_data(data)
    st.plotly_chart(fig, use_container_width=True)