File size: 54,552 Bytes
9a59ac4
 
eaab5cb
e0df468
 
eaab5cb
 
 
 
 
 
9a59ac4
7099c3e
c3ad087
eaab5cb
9a59ac4
 
eaab5cb
 
 
 
 
9a59ac4
 
 
 
eaab5cb
 
 
 
 
76762bb
eaab5cb
 
b704539
1faf464
9a59ac4
 
 
 
 
 
eaab5cb
1faf464
 
 
 
 
 
9a59ac4
 
1faf464
 
9a59ac4
1faf464
 
 
 
 
b704539
9a59ac4
1faf464
9a59ac4
eaab5cb
b704539
 
 
 
76762bb
b704539
 
 
 
 
 
 
 
76762bb
b704539
76762bb
 
b704539
 
 
 
 
 
76762bb
b704539
 
 
 
 
 
eaab5cb
76762bb
eaab5cb
 
a6b368c
eaab5cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b704539
8830a95
9a59ac4
76762bb
 
9a59ac4
6c730a1
3ca348e
 
76762bb
6c730a1
76762bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88da8cb
76762bb
 
815e584
9a59ac4
76762bb
 
9a59ac4
21676f7
 
76762bb
3f2f598
76762bb
6c730a1
b704539
eaab5cb
9a59ac4
 
3f2f598
9a59ac4
 
3f2f598
9a59ac4
eaab5cb
9a59ac4
76762bb
5f4d665
b704539
db59c68
b704539
 
76762bb
9a59ac4
 
 
eaab5cb
 
 
 
 
9a59ac4
 
eaab5cb
 
 
 
 
9a59ac4
eaab5cb
 
 
b704539
 
76762bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b704539
 
 
76762bb
eaab5cb
5f4d665
 
 
 
 
 
 
 
 
 
 
b704539
76762bb
b704539
76762bb
 
 
b704539
 
76762bb
 
 
b704539
 
76762bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0d67bd
 
76762bb
 
 
 
b704539
 
 
76762bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b704539
76762bb
b704539
76762bb
b704539
 
76762bb
eaab5cb
76762bb
 
 
 
eaab5cb
76762bb
 
 
 
eaab5cb
76762bb
 
 
 
eaab5cb
76762bb
 
 
 
 
eaab5cb
76762bb
 
 
 
 
b704539
76762bb
91da5ff
 
b704539
 
76762bb
 
b704539
 
76762bb
 
b704539
 
 
 
76762bb
 
 
b704539
 
 
76762bb
b704539
 
 
 
76762bb
b704539
 
 
 
 
 
 
76762bb
 
 
b704539
 
76762bb
b704539
76762bb
 
 
b704539
 
 
 
 
 
 
 
 
 
 
 
 
 
76762bb
b704539
76762bb
b704539
76762bb
b704539
76762bb
b704539
76762bb
 
 
 
b704539
76762bb
 
 
b704539
76762bb
 
 
b704539
76762bb
 
 
b704539
76762bb
 
 
b704539
76762bb
 
 
d1f3cb7
b704539
 
eaab5cb
d1f3cb7
 
76762bb
 
 
 
 
 
 
 
 
 
 
 
d1f3cb7
76762bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0050e38
76762bb
 
 
 
 
 
 
 
d1f3cb7
 
b704539
d1f3cb7
b704539
 
 
 
d1f3cb7
b704539
 
 
 
d1f3cb7
b704539
 
 
 
d1f3cb7
76762bb
 
 
 
 
67efef9
76762bb
 
 
 
 
d1f3cb7
 
76762bb
 
 
8d537d3
76762bb
 
 
 
 
 
 
 
 
8d537d3
d1f3cb7
76762bb
 
8d537d3
 
b704539
76762bb
 
 
 
 
 
eaab5cb
74ac67b
76762bb
 
 
 
eaab5cb
76762bb
 
 
 
fc5a618
 
 
 
 
92d9b50
 
 
 
 
 
 
 
 
 
 
fc5a618
 
76762bb
 
 
 
 
 
 
 
eaab5cb
38b2b79
 
 
 
b704539
 
 
f154443
b704539
76762bb
 
b704539
6de20f1
b704539
76762bb
 
 
 
 
b704539
 
76762bb
f154443
76762bb
 
 
b704539
 
76762bb
ae30f51
76762bb
eaab5cb
 
b704539
76762bb
 
eaab5cb
76762bb
 
eaab5cb
76762bb
 
 
 
4fc67c7
eaab5cb
76762bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b704539
 
76762bb
b704539
 
76762bb
b704539
 
 
 
 
 
 
 
 
b2b16c4
b704539
 
b2b16c4
 
 
 
b704539
 
b2b16c4
76762bb
b704539
 
 
 
 
 
 
 
2c09e39
b704539
 
2c09e39
 
 
 
b704539
 
2c09e39
76762bb
b704539
 
 
 
 
 
 
2c09e39
b704539
 
2c09e39
 
 
 
b704539
 
2c09e39
76762bb
b704539
 
 
76762bb
 
 
 
 
 
 
b704539
76762bb
b704539
76762bb
b704539
76762bb
b704539
 
 
 
 
 
 
76762bb
b704539
76762bb
 
b704539
 
76762bb
b704539
76762bb
b704539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76762bb
 
b704539
 
 
76762bb
b704539
 
 
 
 
 
 
76762bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0050e38
 
 
76762bb
 
 
 
 
 
 
 
 
 
 
bf0c830
c9c6c41
76762bb
 
 
 
 
 
 
c9c6c41
 
b704539
 
76762bb
 
 
b704539
76762bb
 
 
b704539
 
 
76762bb
 
 
 
 
 
 
 
 
 
 
7ea4826
76762bb
b704539
76762bb
 
b704539
76762bb
 
b704539
76762bb
 
 
eaab5cb
76762bb
 
 
eaab5cb
76762bb
eaab5cb
76762bb
 
eaab5cb
 
 
073a4a7
d1f3cb7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
print('Running')
import time
import requests
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
import matplotlib.lines as mlines
import matplotlib.transforms as mtransforms
import numpy as np
import time
from urllib.error import HTTPError
#import plotly.express as px
#!pip install chart_studio
#import chart_studio.tools as tls
from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.font_manager as font_manager
from datetime import datetime
import pytz
from matplotlib.ticker import MaxNLocator
from matplotlib.patches import Ellipse
import matplotlib.transforms as transforms
from matplotlib.gridspec import GridSpec
datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y')
# Configure Notebook
#%matplotlib inline
plt.style.use('fivethirtyeight')
sns.set_context("notebook")

import warnings
warnings.filterwarnings('ignore')

# import dataframe_image as dfi
# from google.colab import drive
def percentile(n):
    def percentile_(x):
        return np.percentile(x, n)
    percentile_.__name__ = 'percentile_%s' % n
    return percentile_

# import os
# import praw
# import matplotlib.pyplot as plt
# import matplotlib.colors
# import matplotlib.colors as mcolors
# cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#4285f4","#FFFFFF","#F0E442"])
#import pybaseball
import math
# import matplotlib.ticker as mtick
# import matplotlib.ticker as ticker

# colour_palette = ['#FFB000','#648FFF','#785EF0',
                #   '#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']
# import matplotlib.colors as mcolors
# from  matplotlib.ticker import FuncFormatter
# from matplotlib.font_manager import FontProperties
import matplotlib.ticker as mtick
import numpy as np
# import matplotlib.pyplot as plt
import matplotlib.colors

import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
from matplotlib import cm
from datetime import date
def show_values(axs, orient="v", space=-1,stat = [],rank_n=[],linewidth=2,fontsize=10):
    def _single(ax):
        if orient == "v":
            i = 0
            for p in ax.patches:

                _x = p.get_x() + p.get_width() / 2
                _y = p.get_y() + p.get_height() + (p.get_height()*0.01)
                value = '{:.0f}'.format(p.get_height())
                value_stat = '{:.2f}'.format(float(stat[i]))
                rank = rank_n[i]
                ax.text(_x, -4.2, value_stat, ha="center",fontstyle='italic',fontsize=10)
                ax.text(_x, -4.7, rank, ha="center",fontstyle='italic',fontsize=10)
                i = i+1
        elif orient == "h":
            for p in ax.patches:
                _x = p.get_x() + p.get_width() + float(space)
                _y = p.get_y() + p.get_height() - (p.get_height()*0.5)
                value = '{:.0f}'.format(p.get_width())
                ax.text(_x, _y, value, ha="left",fontsize=10)

    if isinstance(axs, np.ndarray):
        for idx, ax in np.ndenumerate(axs):
            _single(ax)
    else:
        _single(axs)

cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#4285F4","white","#FBBC04"])


data_r = requests.get("https://pub-api-ro.fantasysports.yahoo.com/fantasy/v2/league/427.l.public;out=settings/players;position=ALL;start=0;count=3000;sort=rank_season;search=;out=percent_owned;out=auction_values,ranks;ranks=season;ranks_by_position=season;out=expert_ranks;expert_ranks.rank_type=projected_season_remaining/draft_analysis;cut_types=diamond;slices=last7days?format=json_f").json()

total_list = []

for x in data_r['fantasy_content']['league']['players']:
    single_list = []

    single_list.append(int(x['player']['player_id']))
    single_list.append(int(x['player']['player_ranks'][0]['player_rank']['rank_value']))
    single_list.append(x['player']['name']['full'])
    single_list.append(x['player']['name']['first'])
    single_list.append(x['player']['name']['last'])
    single_list.append(x['player']['draft_analysis']['average_pick'])
    single_list.append(x['player']['average_auction_cost'])
    single_list.append(x['player']['display_position'])
    single_list.append(x['player']['editorial_team_abbr'])
    if 'value' in x['player']['percent_owned']:
        single_list.append(x['player']['percent_owned']['value']/100)
    else:
        single_list.append(0)
    total_list.append(single_list)

df_2023 = pd.DataFrame(data=total_list,columns=['player_id','rank_value','full','first','last','average_pick', 'average_cost','display_position','editorial_team_abbr','percent_owned'])


df_2023 = df_2023[df_2023['display_position']=='G'].reset_index(drop=True)
df_2023['pos_new'] = 'G'


player_games = pd.read_csv('player_games_goalies.csv',index_col=[0])
summary_2023 = pd.read_csv('summary_2023_goalies.csv',index_col=[0])
summary_2023['pos'] = 'G'

summary_2022 = pd.read_csv('Drive/summary_2022_goalies.csv',index_col=[0])
#team_games = pd.read_csv('Drive/team_games.csv')
nhl_logos = pd.read_csv("NHL Logos - NHL Logos.csv")
#team_games = team_games.merge(right=nhl_logos[['Team Name','Team']],left_on=['team'],right_on=['Team Name'],how='left')

# cap_friendly_df = pd.read_csv('cap_friendly.csv')
# cap_friendly_df = cap_friendly_df[cap_friendly_df.POS == "G"]
# cap_friendly_df['POS_new'] = 'G'
# cap_friendly_df['new_length'] = cap_friendly_df['EXP. YEAR'] - 2022
# cap_friendly_df['new_cap'] =  cap_friendly_df['CAP HIT'].astype(str).str[1:]
# cap_friendly_df['new_cap'] =  cap_friendly_df['new_cap'].str.replace(',','').astype(int)/1000000
# cap_friendly_df['TEAM'] =  cap_friendly_df[['TEAM']].replace(['LAK','NJD','SJS','TBL'],['L.A','N.J','S.J','T.B'])
# cap_friendly_df['new_cap'] = round(cap_friendly_df['new_cap'],1)
# cap_friendly_df['player_no_acc'] = cap_friendly_df['PLAYER'].str.normalize('NFKD').str.encode('ascii', errors='ignore').str.decode('utf-8')
# # bios_pd['player_no_acc'] = bios_pd['player'].str.normalize('NFKD').str.encode('ascii', errors='ignore').str.decode('utf-8')
# cap_friendly_df['sheets'] = "$"+cap_friendly_df['new_cap'].astype(str)+ "M x "+cap_friendly_df['new_length'].astype(str)

# #cap_friendly_df = cap_friendly_df.merge(right=summary_2023_all[['player_no_acc','player_id']],how='left',left_on=['player_no_acc'],right_on=['player_no_acc']).fillna("")
# #cap_friendly_df.to_csv('cap_friendly.csv')

# import difflib
# summary_2023['yahoo_name'] = summary_2023.Player.map(lambda x: (difflib.get_close_matches(x, df_2023.full)[:1] or [None])[0])
# summary_2023['cap_name'] = summary_2023['Player'].apply(lambda x: (difflib.get_close_matches(x, cap_friendly_df['player_no_acc'])[:1] or [None])[0])
yahoo_to_nhl_df = pd.read_csv('yahoo_to_nhl.csv', encoding='unicode_escape')
print('made it here')
#summary_2023 = summary_2023.merge(right=cap_friendly_df[['player_no_acc','POS_new','sheets','AGE']],left_on=['cap_name','pos'],right_on=['player_no_acc','POS_new'],how='left')
yahoo_to_nhl_df = yahoo_to_nhl_df.merge(df_2023,left_on='player_id_yahoo',right_on='player_id')

summary_2023 = summary_2023.merge(yahoo_to_nhl_df,left_on='player_id',right_on='nhl_id',suffixes=['','_yahoo'],how='left')
# summary_2023 = summary_2023.merge(right=df_2023[['full','pos_new','percent_owned','display_position']],left_on=['cap_name','pos'],right_on=['full','pos_new'],how='left').fillna('')

game_log_all_on_ice = pd.read_csv('player_games_goalies.csv',index_col=[0])
summary_all_on_ice_2023 = pd.read_csv('summary_2023_goalies.csv',index_col=[0])
summary_all_on_ice_2022 = pd.read_csv('Drive/summary_2022_goalies.csv',index_col=[0])

skater_dict = game_log_all_on_ice.sort_values(by='date',ascending=False).drop_duplicates(subset='player_id').set_index('player_id').sort_values(by='Player')
skater_dict['skater_team'] = skater_dict.Player + ' - ' + skater_dict.Team
skater_dict = skater_dict['skater_team'].to_dict()

from shiny import ui, render, App
import matplotlib.image as mpimg
app_ui = ui.page_fluid(
    #ui.panel_title("Simulate a normal distribution"),

    ui.layout_sidebar(

      ui.panel_sidebar(
        #ui.input_date_range("date_range_id", "Date range input",start = statcast_df.game_date.min(), end = statcast_df.game_date.max()),
        ui.input_select("id", "Select Goalie",skater_dict,width=1,selected=8480069,selectize=True),
        #ui.input_select("id", "Select Skater",skater_dict,width=1),
        ui.input_numeric("last_game_id", "Select Last 'n' Games",value=1,width=1),
        #ui.input_select("ignore_id", "Remove Columns",['Position','Roster%'],multiple=True,selectize=True),
      width=2),
      ui.panel_main(
        ui.output_plot("plot",height = "900px",width="1200px")
        )
    ),
)




from urllib.request import Request, urlopen
from shiny import App, reactive, ui
from shiny.ui import h2, tags
# importing OpenCV(cv2) module




#print(app_ui)
def server(input, output, session):

    @output
    @render.plot(alt="A histogram")
    def plot():
        def show_values(axs, orient="v", space=-1,stat = [],rank_n=[],linewidth=2,fontsize=10):
            def _single(ax):
                if orient == "v":
                    i = 0
                    for p in ax.patches:

                        _x = p.get_x() + p.get_width() / 2
                        _y = p.get_y() + p.get_height() + (p.get_height()*0.01)
                        value = '{:.0f}'.format(p.get_height())
                        value_stat = '{:.2f}'.format(float(stat[i]))
                        rank = rank_n[i]
                        ax.text(_x, -4.2, value_stat, ha="center",fontstyle='italic',fontsize=10)
                        ax.text(_x, -4.7, rank, ha="center",fontstyle='italic',fontsize=10)
                        i = i+1
                elif orient == "h":
                    for p in ax.patches:
                        _x = p.get_x() + p.get_width() + float(space)
                        _y = p.get_y() + p.get_height() - (p.get_height()*0.5)
                        value = '{:.0f}'.format(p.get_width())
                        ax.text(_x, _y, value, ha="left",fontsize=10)

            if isinstance(axs, np.ndarray):
                for idx, ax in np.ndenumerate(axs):
                    _single(ax)
            else:
                _single(axs)
        # from matplotlib import rc, font_manager
        # rc('text', usetex=True)
        # rc('font',**{'family':'sans-serif','sans-serif':['Century Gothic']})


        try:
            if sum(summary_2023.player_id.isin([int(input.id())]))<1:
                fig, ax = plt.subplots(figsize=(10,16))
                fig.set_facecolor('white')
                fig.text(s=f'Select Player From List',x=0.5,y=0.5,fontsize=28,ha='center')
                return            
        except ValueError:
                fig, ax = plt.subplots(figsize=(10,16))
                fig.set_facecolor('white')
                fig.text(s=f'Select Player From List',x=0.5,y=0.5,fontsize=28,ha='center')
                return   
        player_id = int(input.id())
        print('made it here')
        last_games = input.last_game_id()
        name = summary_2023.loc[summary_2023.player_id == player_id].Player.values[0]
        #last_games = int(input.last_game_id())
        today = str(datetime.now().date())
        

        game_log_all_on_ice_small = game_log_all_on_ice[game_log_all_on_ice.player_id==player_id].reset_index(drop=True)
        summary_all_on_ice_2023_small = summary_all_on_ice_2023[summary_all_on_ice_2023.player_id==player_id].reset_index(drop=True)
        summary_all_on_ice_2022_small = summary_all_on_ice_2022[summary_all_on_ice_2022.player_id==player_id].reset_index(drop=True)

        df_last_games = pd.DataFrame(data={'Games':[last_games]})

        df_last_games['TOI'] = game_log_all_on_ice_small['TOI'][:last_games].sum()
        df_last_games['TOI/G'] = game_log_all_on_ice_small['TOI'][:last_games].sum()/df_last_games.Games
        df_last_games['PK TOI/G'] = game_log_all_on_ice_small['TOI_pk'][:last_games].sum()/df_last_games.Games
        df_last_games['All SV%'] = 1 - game_log_all_on_ice_small['Goals Against'][:last_games].sum()/game_log_all_on_ice_small['Shots Against'][:last_games].sum()
        df_last_games['5v5 SV%'] = 1 - game_log_all_on_ice_small['Goals Against_5v5'][:last_games].sum()/game_log_all_on_ice_small['Shots Against_5v5'][:last_games].sum()
        df_last_games['PK SV%'] = 1 - game_log_all_on_ice_small['Goals Against_pk'][:last_games].sum()/game_log_all_on_ice_small['Shots Against_pk'][:last_games].sum()
        df_last_games['LDSV%'] = 1 - game_log_all_on_ice_small['LD Goals Against'][:last_games].sum()/game_log_all_on_ice_small['LD Shots Against'][:last_games].sum()
        df_last_games['MDSV%'] = 1 - game_log_all_on_ice_small['MD Goals Against'][:last_games].sum()/game_log_all_on_ice_small['MD Shots Against'][:last_games].sum()
        df_last_games['HDSV%'] = 1 - game_log_all_on_ice_small['HD Goals Against'][:last_games].sum()/game_log_all_on_ice_small['HD Shots Against'][:last_games].sum()
        df_last_games['GSAx/60'] = (game_log_all_on_ice_small['xG Against'][:last_games].sum() - game_log_all_on_ice_small['Goals Against'][:last_games].sum())/df_last_games.TOI*60
        df_last_games['xGA/60'] = (game_log_all_on_ice_small['xG Against'][:last_games].sum() )/df_last_games.TOI*60
        df_last_games['GA/60'] = (game_log_all_on_ice_small['Goals Against'][:last_games].sum())/df_last_games.TOI*60


        df_season = pd.DataFrame(data={'Games':[summary_all_on_ice_2023_small.GP[0]]})
        df_season['TOI'] = summary_all_on_ice_2023_small['TOI'].sum()
        df_season['TOI/G'] = summary_all_on_ice_2023_small['TOI'].sum()/df_season.Games
        df_season['PK TOI/G'] = summary_all_on_ice_2023_small['TOI_pk'].sum()/df_season.Games
        df_season['All SV%'] = 1 - summary_all_on_ice_2023_small['GA'].sum()/summary_all_on_ice_2023_small['SA'].sum()
        df_season['5v5 SV%'] = 1 - summary_all_on_ice_2023_small['GA_5v5'].sum()/summary_all_on_ice_2023_small['SA_5v5'].sum()
        df_season['PK SV%'] = 1 - summary_all_on_ice_2023_small['GA_pk'].sum()/summary_all_on_ice_2023_small['SA_pk'].sum()
        df_season['LDSV%'] = 1 - summary_all_on_ice_2023_small['LDGA'].sum()/summary_all_on_ice_2023_small['LDSA'].sum()
        df_season['MDSV%'] = 1 - summary_all_on_ice_2023_small['MDGA'].sum()/summary_all_on_ice_2023_small['MDSA'].sum()
        df_season['HDSV%'] = 1 - summary_all_on_ice_2023_small['HDGA'].sum()/summary_all_on_ice_2023_small['HDSA'].sum()
        df_season['GSAx/60'] = (summary_all_on_ice_2023_small['xGA'].sum() - summary_all_on_ice_2023_small['GA'].sum())/summary_all_on_ice_2023_small['TOI'].sum()*60
        df_season['xGA/60'] = (summary_all_on_ice_2023_small['xGA'].sum())/summary_all_on_ice_2023_small['TOI'].sum()*60
        df_season['GA/60'] = (summary_all_on_ice_2023_small['GA'].sum())/summary_all_on_ice_2023_small['TOI'].sum()*60

        df_last_games.rename(index={0:'Last '+str(df_last_games.Games[0])+' GP'},inplace=True)
        df_season.rename(index={0:'2023-24 ('+str(df_season.Games[0])+'GP)'},inplace=True)

        df_career_total = pd.DataFrame(data={'Games':[summary_all_on_ice_2022_small.GP[0]]})
        df_career_total['TOI'] = summary_all_on_ice_2022_small['TOI'].sum()
        df_career_total['TOI/G'] = summary_all_on_ice_2022_small['TOI'].sum()/df_career_total.Games
        df_career_total['PK TOI/G'] = summary_all_on_ice_2022_small['TOI_pk'].sum()/df_career_total.Games
        df_career_total['All SV%'] = 1 - summary_all_on_ice_2022_small['GA'].sum()/summary_all_on_ice_2022_small['SA'].sum()
        df_career_total['5v5 SV%'] = 1 - summary_all_on_ice_2022_small['GA_5v5'].sum()/summary_all_on_ice_2022_small['SA_5v5'].sum()
        df_career_total['PK SV%'] = 1 - summary_all_on_ice_2022_small['GA_pk'].sum()/summary_all_on_ice_2022_small['SA_pk'].sum()
        df_career_total['LDSV%'] = 1 - summary_all_on_ice_2022_small['LDGA'].sum()/summary_all_on_ice_2022_small['LDSA'].sum()
        df_career_total['MDSV%'] = 1 - summary_all_on_ice_2022_small['MDGA'].sum()/summary_all_on_ice_2022_small['MDSA'].sum()
        df_career_total['HDSV%'] = 1 - summary_all_on_ice_2022_small['HDGA'].sum()/summary_all_on_ice_2022_small['HDSA'].sum()
        df_career_total['GSAx/60'] = (summary_all_on_ice_2022_small['xGA'].sum() - summary_all_on_ice_2022_small['GA'].sum())/summary_all_on_ice_2022_small['TOI'].sum()*60
        df_career_total['xGA/60'] = (summary_all_on_ice_2022_small['xGA'].sum())/summary_all_on_ice_2022_small['TOI'].sum()*60
        df_career_total['GA/60'] = (summary_all_on_ice_2022_small['xGA'].sum())/summary_all_on_ice_2022_small['TOI'].sum()*60

        df_career_total.rename(index={0:'2022-23 ('+str(df_career_total.Games[0])+'GP)'},inplace=True)

        df_career_total.rename(index={0:'2022-23 ('+str(df_career_total.Games[0])+'GP)'},inplace=True)
        df_combined = df_last_games.append([df_season,df_career_total])
        df_combined_t = round(df_combined,3).transpose()
        # # df_combined.style.format(formatter={"IPP": "{:.1%}","S%": "{:.1%}","1st Assist%": "{:.1%}","Off. Zone Start%": "{:.1%}","oiSH%": "{:.1%}"}).set_precision(2)
        rows = [idx for idx in df_combined_t.index if '/' not in idx]
        df_combined_t = df_combined_t.fillna(0)


        colormap = plt.get_cmap(cmap)

        value = 1
        # Normalize the value
        norm = Normalize(vmin=0.8, vmax=1.2)
        normalized_value = norm(value)

        col_3_colour = ['white']*len(df_combined_t)
        col_2_colour = [colormap(norm(x)) for x in list(((df_combined_t[df_combined_t.columns[1]].values) / (df_combined_t[df_combined_t.columns[2]].values)))]
        col_1_colour = [colormap(norm(x)) for x in list(((df_combined_t[df_combined_t.columns[0]].values) / (df_combined_t[df_combined_t.columns[1]].values)))]
        colour_df = pd.DataFrame(data=[col_1_colour,col_2_colour,col_3_colour]).T.values

        colour_df[[0],[0]] = 'white'
        colour_df[[1],[0]] = 'white'
        colour_df[[0],[1]] = 'white'
        colour_df[[1],[1]] = 'white'

        if df_combined_t.values[[10],[0]] < 0:
            if df_combined_t.values[[10],[1]] < 0:
                cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
                norm = Normalize(vmin=0.8, vmax=1.2)
                colour_df[[10],[0]] = tuple(colormap(norm(-df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))

        if df_combined_t.values[[10],[1]] < 0:
            if df_combined_t.values[[10],[2]] < 0:
                cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
                norm = Normalize(vmin=0.8, vmax=1.2)
                colour_df[[10],[1]] = tuple(colormap(norm(-df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))

        #age = summary_2023[summary_2023.player_id==player_id].reset_index(drop=True)['AGE'][0]
        percent_owned = summary_2023[summary_2023.player_id==player_id].reset_index(drop=True).fillna(0)['percent_owned'][0]
        yahoo_position = summary_2023[summary_2023.player_id==player_id].reset_index(drop=True).fillna('G')['display_position'][0]


        # logging.getLogger('matplotlib.font_manager').disabled = True
        nhl_logos = pd.read_csv("NHL Logos - NHL Logos.csv")


        # image = image = "https://cms.nhl.bamgrid.com/images/headshots/current/168x168/"+str(player_id)+".png"
        # logo = nhl_logos[nhl_logos.Team==game_log_all_on_ice_small.Team[0]].reset_index().URL[0]
        # fig, ax = plt.subplots(figsize=(10,16))
        # fig.set_facecolor('white')

        # # img = mpimg.imread('players/'+name+'_'+str(last_games)+'.png')
        # ax.imshow(img)
        # ax.axis('off')
        # fig.tight_layout()

        # ax.axis('off')
        # im = plt.imread('players/'+name+'_'+str(last_games)+'.png')
        # ax = fig.add_axes([0,0.08,1,0.85], anchor='C', zorder=1)
        # ax.imshow(im)
        # ax.axis('off')
        # fig.tight_layout()

        # fig.text(x=0.5,y=0.05,s='Note: Last Games compares to 2023-24. 2023-24 compares to 2022-23.',horizontalalignment='center',fontsize=18,fontname='Century Gothic')
        # # fig.text(x=0.05,y=-0.1,s='Created By: @TJStats',horizontalalignment='left',fontsize=24,fontname='Century Gothic')
        # # fig.text(x=0.95,y=-0.1,s='Data: Natural Stat Trick',horizontalalignment='right',fontsize=24,fontname='Century Gothic')
        # fig.text(x=0.5,y=1.13,s='NHL Player Summary',horizontalalignment='center',fontsize=52, fontweight='bold')
        # fig.text(x=0.5,y=1.08,s='2023-24 Season',horizontalalignment='center',fontsize=36,fontname='Century Gothic', fontstyle='italic')
        # fig.text(x=0.12,y=1.03,s='Player',horizontalalignment='center',fontsize=22,fontname='Century Gothic', fontweight='bold')
        # fig.text(x=0.12,y=1.0,s='Team',horizontalalignment='center',fontsize=22,fontname='Century Gothic', fontweight='bold')
        # fig.text(x=0.12,y=0.97,s='Position',horizontalalignment='center',fontsize=22,fontname='Century Gothic', fontweight='bold')
        # fig.text(x=0.12,y=0.94,s='Age',horizontalalignment='center',fontsize=22,fontname='Century Gothic', fontweight='bold')
        # #fig.text(x=0.12,y=0.91,s='Cap Hit',horizontalalignment='center',fontsize=22,fontname='Century Gothic', fontweight='bold')
        # fig.text(x=0.12,y=0.91,s='Roster%',horizontalalignment='center',fontsize=22,fontname='Century Gothic', fontweight='bold')

        # fig.text(x=0.25,y=1.03,s=name,horizontalalignment='left',fontsize=22,fontname='Century Gothic')
        # fig.text(x=0.25,y=1.0,s=game_log_all_on_ice_small['Team'].reset_index(drop=True)[0],horizontalalignment='left',fontsize=22,fontname='Century Gothic')
        # fig.text(x=0.25,y=0.97,s=yahoo_position,horizontalalignment='left',fontsize=22,fontname='Century Gothic')
        # fig.text(x=0.25,y=0.94,s=str(age),horizontalalignment='left',fontsize=22,fontname='Century Gothic')
        # #fig.text(x=0.25,y=0.91,s=cap_friendly_df.loc[cap_friendly_df['player_no_acc']==name].reset_index()['sheets'][0],horizontalalignment='left',fontsize=22,fontname='Century Gothic')
        # fig.text(x=0.25,y=0.91,s=str(int(percent_owned*100))+'%',horizontalalignment='left',fontsize=22,fontname='Century Gothic')


        # im = plt.imread(image)
        # newax = fig.add_axes([0.5,0.8,0.22,0.22], anchor='NW', zorder=1)
        # newax.imshow(im)

        # imr = plt.imread(logo)
        # newerax = fig.add_axes([0.75,0.8,0.22,0.22], anchor='NW', zorder=1)
        # newerax.imshow(imr)

        # newax.axis('off')
        # newerax.axis('off')

        # plt.savefig('players/'+name+"_"+str(last_games)+' int.png',bbox_inches="tight")
        #plt.close()

        test = summary_2023.copy()
        #test.loc[name == test.Player].reset_index().TOI[0]/1.5
        min_time = min(math.floor(test.loc[player_id == test.player_id].reset_index().TOI[0]/100)*100,test.GP.max()*30,math.ceil(test.loc[player_id == test.player_id].reset_index().TOI[0]/200)*100)
        # min_time = min(math.floor(test.loc[name == test.Player].reset_index().TOI[0]/100)*100,test.GP.max()*10)
        test_filter = test[(test.TOI >= min_time)]#.reset_index(drop=True)

        test_filter['GSAx'] = test_filter['xGA'] - test_filter['GA']
        test_filter['GSAx/60'] = (test_filter['GSAx'])/(test_filter['TOI'])*60
        test_filter['GAA'] = (test_filter['GA'])/(test_filter['TOI'])*60
        test_filter['xG Against/60'] = (test_filter['xGA'])/(test_filter['TOI'])*60

        test_filter['SV% (All)'] = (test_filter['SV'])/(test_filter['SA'])
        test_filter['SV% (5v5)'] = (test_filter['SV_5v5'])/(test_filter['SA_5v5'])
        test_filter['SV% (PK)'] = (test_filter['SV_pk'])/(test_filter['SA_pk'])

        test_filter['LDSV%'] = (test_filter['LDSV'])/(test_filter['LDSA'])
        test_filter['MDSV%'] = (test_filter['MDSV'])/(test_filter['MDSA'])
        test_filter['HDSV%'] = (test_filter['HDSV'])/(test_filter['HDSA'])

        test_filter['GSAx/60 Z-Score'] = (test_filter['GSAx/60']-test_filter['GSAx/60'].mean())/test_filter['GSAx/60'].std()
        test_filter['GA/60 Z-Score'] = -(test_filter['GAA']-test_filter['GAA'].mean())/test_filter['GAA'].std()
        test_filter['xGA/60 Z-Score'] = -(test_filter['xG Against/60']-test_filter['xG Against/60'].mean())/test_filter['xG Against/60'].std()

        test_filter['SV% (All) Z-Score'] = (test_filter['SV% (All)']-test_filter['SV% (All)'].mean())/test_filter['SV% (All)'].std()
        test_filter['SV% (5v5) Z-Score'] = (test_filter['SV% (5v5)']-test_filter['SV% (5v5)'].mean())/test_filter['SV% (5v5)'].std()
        test_filter['SV% (PK) Z-Score'] = (test_filter['SV% (PK)']-test_filter['SV% (PK)'].mean())/test_filter['SV% (PK)'].std()

        test_filter['LDSV% Z-Score'] = (test_filter['LDSV%']-test_filter['LDSV%'].mean())/test_filter['LDSV%'].std()
        test_filter['MDSV% Z-Score'] = (test_filter['MDSV%']-test_filter['MDSV%'].mean())/test_filter['MDSV%'].std()
        test_filter['HDSV% Z-Score'] = (test_filter['HDSV%']-test_filter['HDSV%'].mean())/test_filter['HDSV%'].std()






        values_1 = test_filter.loc[name == test_filter.Player][['GSAx/60','GAA','xG Against/60']].reset_index(drop=True).loc[0]
        values_2 = test_filter.loc[name == test_filter.Player][['SV% (All)','SV% (5v5)','SV% (PK)']].reset_index(drop=True).loc[0]
        values_3 = test_filter.loc[name == test_filter.Player][['LDSV%','MDSV%','HDSV%']].reset_index(drop=True).loc[0]

        # categories = [i[:-11]+'/GP' for i in test_filter.columns[-14:-7]]

        #categories = [*categories]

        player = list(np.around(test_filter.loc[name == test_filter.Player][test_filter.columns[-9:]].values.flatten().tolist(),2))

        #player = [*player, player[0]]


        label_loc = np.linspace(start=0, stop=2 * np.pi, num=len(player))
        # categories_1 = [i[:-8]+'/GP' for i in test_filter.columns[-14:-7]]
        # categories_2 = [i[:-8]+'/60' for i in test_filter.columns[-7:]]
        categories = [i[:-8] for i in test_filter.columns[-9:]]
        #categories[0] = 'GSAx/60'
        player = list(np.around(test_filter.loc[name == test_filter.Player][test_filter.columns[-9:]].values.flatten().tolist(),2))
        color_scheme = []
        for i in player:
            if i <= -2:
                color_scheme.append('#4285F4')
            if i > -2 and i <= -1:
                color_scheme.append('#A1C2FA')
            if i > -1 and i <= 0:
                color_scheme.append('#D0E1FD')
            if i > 0 and i <= 1:
                color_scheme.append('#FEEFC1')
            if i > 1 and i <= 2:
                color_scheme.append('#FDDE82')
            if i > 2:
                color_scheme.append('#FBBC04')








        rank_1 = list(test_filter[values_1.index].rank(method='min',ascending=False).loc[name == test_filter.Player].reset_index(drop=True).astype(int).iloc[0][[categories[0]]])
        rank_1 = rank_1 + list(test_filter[values_1.index].rank(method='min',ascending=True).loc[name == test_filter.Player].reset_index(drop=True).astype(int).iloc[0][['GAA','xG Against/60']])
        rank_2 = list(test_filter[values_2.index].rank(method='min',ascending=False).loc[name == test_filter.Player].reset_index(drop=True).astype(int).iloc[0])
        rank_3 = list(test_filter[values_3.index].rank(method='min',ascending=False).loc[name == test_filter.Player].reset_index(drop=True).astype(int).iloc[0])
        import scipy as sp
        import scipy.interpolate
        game_log_all_on_ice_small['GSAx'] = game_log_all_on_ice_small['xG Against'] - game_log_all_on_ice_small['Goals Against']
        #game_log_all_on_ice_small['game'] = game_log_all_on_ice_small.groupby('player_id').cumcount()
        game_log_all_on_ice_small = game_log_all_on_ice_small.sort_values(by=['game'])
        new_length = game_log_all_on_ice_small.game.max()*100
        new_x = np.linspace(game_log_all_on_ice_small.game.min(), game_log_all_on_ice_small.game.max(), new_length)
        new_y = sp.interpolate.interp1d(game_log_all_on_ice_small.game,game_log_all_on_ice_small['GSAx'].cumsum(),kind='linear')(new_x)
        new_df = pd.DataFrame(columns=['Game','GSAx'])
        new_df['Game'] = new_x
        new_df['GSAx'] = new_y
        # fig, ([ax1,ax2],[ax3,ax4])= plt.subplots(nrows=2, ncols=2,figsize=(16,10))


        colormap = plt.get_cmap(cmap)

        value = 1
        # Normalize the value
        norm = Normalize(vmin=0.8, vmax=1.2)
        normalized_value = norm(value)

        col_3_colour = ['white']*len(df_combined_t)
        col_2_colour = [colormap(norm(x)) for x in list(((df_combined_t[df_combined_t.columns[1]].values) / (df_combined_t[df_combined_t.columns[2]].values)))]
        col_1_colour = [colormap(norm(x)) for x in list(((df_combined_t[df_combined_t.columns[0]].values) / (df_combined_t[df_combined_t.columns[1]].values)))]
        colour_df = pd.DataFrame(data=[col_1_colour,col_2_colour,col_3_colour]).T.values

        colour_df[[0],[0]] = 'white'
        colour_df[[1],[0]] = 'white'
        colour_df[[0],[1]] = 'white'
        colour_df[[1],[1]] = 'white'

        if df_combined_t.values[[10],[0]] < 0:
            if df_combined_t.values[[10],[1]] < 0:
                cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
                norm = Normalize(vmin=0.8, vmax=1.2)
                colour_df[[10],[0]] = tuple(colormap(norm(-df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))

        if df_combined_t.values[[10],[1]] < 0:
            if df_combined_t.values[[10],[2]] < 0:
                cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
                norm = Normalize(vmin=0.8, vmax=1.2)
                colour_df[[10],[1]] = tuple(colormap(norm(-df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))


        sns.set_theme(style="whitegrid", palette="pastel")
        fig = plt.figure(figsize=(12, 9),dpi=300)
        fig.set_facecolor('white')

        ax1 = plt.subplot(1,2,1)
        ax2 = plt.subplot(3,2,2)
        ax3 = plt.subplot(3,2,4)
        ax4 = plt.subplot(3,2,6)
        axes = [ax1, ax2, ax3, ax4]
        # ax[0][0].axis('off')
        # im = plt.imread('players/'+name+'_'+str(last_games)+' int.png')
        # ax[0][0] = fig.add_axes([0,0,1,1], anchor='W', zorder=1)
        # ax[0][0].imshow(im)


        # ax[0][0].axis('off')
        # ax[1][0].axis('off')


        # ax[0][0].axis('off')
        # ax[1][0].axis('off')
        # image = "https://cms.nhl.bamgrid.com/images/headshots/current/168x168/"+str(player_id)+".png"
        # logo = nhl_logos[nhl_logos.Team==game_log_all_on_ice_small.Team[0]].reset_index().URL[0]
        # #im = plt.imread('players/'+name+'_'+str(last_games)+'.png')
        # # ax = fig.add_axes([0,0,1,0.85], anchor='C', zorder=1)
        # # ax.imshow(im)


        # im = plt.imread(image)
        # ax1 = fig.add_axes([0.25,0.76,0.12,0.12], anchor='NW', zorder=1)
        # ax1.imshow(im)
        # ax1.axis('off')

        # imr = plt.imread(logo)
        # ax1 = fig.add_axes([0.18,0.76,0.75,0.075], anchor='NW', zorder=1)
        # ax1.imshow(imr)
        # ax1.axis('off')
        
        # image = "https://cms.nhl.bamgrid.com/images/headshots/current/168x168/"+str(player_id)+".png"
        #f"https://assets.nhle.com/mugs/nhl/20232024/BUF/8482221.png"
        #image = "https://cms.nhl.bamgrid.com/images/headshots/current/168x168/"+str(player_id)+".png"

        # try:
        #     #image = "https://cms.nhl.bamgrid.com/images/headshots/current/168x168/"+str(player_id)+".png"
        #     image = "https://assets.nhle.com/mugs/nhl/20232024/PIT/"+str(player_id)+".png"
        #     im = plt.imread(image)

        # except HTTPError as err:
        #     if err.code == 403:
        #             image = "https://cms.nhl.bamgrid.com/images/headshots/current/168x168/skater.png"
        #             im = plt.imread(image)
        #     else:
        #         print('Error')
        
        #image = "https://cms.nhl.bamgrid.com/images/headshots/current/168x168/"+str(player_id)+".png"
        logo = nhl_logos[nhl_logos.Team==game_log_all_on_ice_small.Team[0]].reset_index().URL[0]
        #fig, ax = plt.subplots(figsize=(10,16))
        #fig.set_facecolor('white')

        # img = mpimg.imread('players/'+name+'_'+str(last_games)+'.png')
        # ax.imshow(img)
        # ax.axis('off')
        # fig.tight_layout()

        # #im = plt.imread(image)
        # im = OffsetImage(im, zoom=.50)
        # ab = AnnotationBbox(im, (0.73, 0.765), xycoords='axes fraction', box_alignment=(0.0,0.0),bboxprops={'edgecolor':'white'})
        # ax1.add_artist(ab)
        # axim = fig.add_axes([0.25,0.76,0.12,0.12], anchor='NW', zorder=1)
        # axim.imshow(im)
        # axim.axis('off')

        imr = plt.imread(logo)
        imr = OffsetImage(imr, zoom=.065)
        ab = AnnotationBbox(imr, (0.5, 0.765), xycoords='axes fraction', box_alignment=(0.0,0.0),bboxprops={'edgecolor':'white'})
        ax1.add_artist(ab)

        sub_value  = 0.16
        ax1.text(x=0.5,y=1.13-sub_value,s='NHL Player Summary',horizontalalignment='center',fontsize=28, fontweight='bold',ha='center')
        ax1.text(x=0.5,y=1.08-sub_value,s='2023-24 Season',horizontalalignment='center',fontsize=18,fontname='Century Gothic', fontstyle='italic',ha='center')
        ax1.text(x=0.125,y=1.04-sub_value,s='Player',horizontalalignment='center',fontsize=14,fontname='Century Gothic', fontweight='bold')
        ax1.text(x=0.125,y=1.005-sub_value,s='Team',horizontalalignment='center',fontsize=14,fontname='Century Gothic', fontweight='bold')
        ax1.text(x=0.125,y=0.97-sub_value,s='Position',horizontalalignment='center',fontsize=14,fontname='Century Gothic', fontweight='bold')
        #ax1.text(x=0.1,y=0.94-sub_value,s='Age',horizontalalignment='center',fontsize=18,fontname='Century Gothic', fontweight='bold')
        #ax1.text(x=0.12,y=0.91-sub_value,s='Cap Hit',horizontalalignment='center',fontsize=22,fontname='Century Gothic', fontweight='bold')
        ax1.text(x=0.125,y=0.935-sub_value,s='Roster%',horizontalalignment='center',fontsize=14,fontname='Century Gothic', fontweight='bold')

        ax1.text(x=0.25,y=1.04-sub_value,s=name,horizontalalignment='left',fontsize=14,fontname='Century Gothic')
        ax1.text(x=0.25,y=1.005-sub_value,s=list(game_log_all_on_ice_small['Team'].reset_index(drop=True))[0],horizontalalignment='left',fontsize=14,fontname='Century Gothic')
        ax1.text(x=0.25,y=0.97-sub_value,s=yahoo_position,horizontalalignment='left',fontsize=14,fontname='Century Gothic')
        #ax1.text(x=0.25,y=0.94-sub_value,s=str(summary_2023_one.reset_index().AGE[0]),horizontalalignment='left',fontsize=22,fontname='Century Gothic')
        #ax1.text(x=0.25,y=0.91-sub_value,s=summary_2023_one.loc[summary_2023_one['player_id']==player_id].reset_index()['sheets'][0],horizontalalignment='left',fontsize=22,fontname='Century Gothic')
        ax1.text(x=0.25,y=0.935-sub_value,s=str(int(percent_owned*100))+'%',horizontalalignment='left',fontsize=14,fontname='Century Gothic')

        ax1.text(x=0.55,y=0.07,s='Note: Last Games compares to 2023-24. 2023-24 compares to 2022-23.',horizontalalignment='center',fontsize=9,fontname='Century Gothic',va='bottom')


        ax1.axis("off")
        ax1.set_facecolor('white')


        # [colormap(norm(0.8)),colormap(norm(1)),colormap(norm(1.2))]
        #table_scale = ax1.table(cellText=['-20%','±0%','+20%'],cellLoc='center',rowLoc='center', bbox=[0.20, 0.1, 0.8, 0.05],cellColours=["#4285F4","white",'#FBBC04'])

        table_scale = ax1.table(cellText=[['-20%','±0%','+20%']],rowLabels=['   Scale   '],
                        cellLoc='center',rowLoc='center', bbox=[0.20, 0.03, 0.8, 0.03],cellColours=[[colormap(norm(0.8)),colormap(norm(1)),colormap(norm(1.2))]])
        table_scale.set_fontsize(10)
        table_scale.scale(1, 0.5)


        if df_combined_t.values[[10],[0]] < 0 and df_combined_t.values[[10],[1]] < 0:
            cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
            norm = Normalize(vmin=0.8, vmax=1.2)
            colour_df[[10],[0]] = tuple(cmap_flip(norm(df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))

        elif df_combined_t.values[[10],[0]] < 0 and df_combined_t.values[[10],[1]] > 0:
            #cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
            cmap_y = matplotlib.colors.LinearSegmentedColormap.from_list("", ["white","#4285F4"])
            norm = Normalize(vmin=-1, vmax=0)
            colour_df[[10],[0]] = tuple(cmap_y(norm(df_combined_t.values[[10],[0]] - df_combined_t.values[[10],[1]])))

        elif df_combined_t.values[[10],[0]] > 0 and df_combined_t.values[[10],[1]] < 0:
            cmap_y = matplotlib.colors.LinearSegmentedColormap.from_list("", ["white","#FBBC04"])
            norm = Normalize(vmin=0, vmax=1)
            colour_df[[10],[0]] = tuple(cmap_y(norm(df_combined_t.values[[10],[0]] - df_combined_t.values[[10],[1]])))


        if df_combined_t.values[[10],[1]] < 0 and df_combined_t.values[[10],[2]] < 0:
            print('1')
            cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
            norm = Normalize(vmin=0.8, vmax=1.2)
            colour_df[[10],[1]] = tuple(cmap_flip(norm(df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))

        elif df_combined_t.values[[10],[1]] < 0 and df_combined_t.values[[10],[2]] > 0:
            print('2')
            #cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
            cmap_y = matplotlib.colors.LinearSegmentedColormap.from_list("", ["white","#4285F4"])
            norm = Normalize(vmin=-1, vmax=0)
            colour_df[[10],[1]] = tuple(cmap_y(norm(df_combined_t.values[[10],[1]] - df_combined_t.values[[10],[2]])))

        elif df_combined_t.values[[10],[1]] > 0 and df_combined_t.values[[10],[2]] < 0:
            print('3')
            cmap_y = matplotlib.colors.LinearSegmentedColormap.from_list("", ["white","#FBBC04"])
            norm = Normalize(vmin=0, vmax=1)
            colour_df[[10],[1]] = tuple(cmap_y(norm(df_combined_t.values[[10],[1]] - df_combined_t.values[[10],[2]])))


        table = ax1.table(cellText=df_combined_t.values, colLabels=df_combined_t.columns,rowLabels=df_combined_t.index
                        , cellLoc='center',rowLoc='center', bbox=[0.20, 0.1, 0.8, 0.65],cellColours=colour_df)
        #table.auto_set_font_size(True)
        table.set_fontsize(20)
        table.scale(1, 1.5)



        format_col = df_combined_t[df_combined_t.columns[0]]
        n_c = 0
        for cell in table.get_celld().values():
            if n_c < 1*3:
                if cell.get_text().get_text() in format_col.astype(str).values:
                    cell.get_text().set_text('{:,.0f}'.format(float(cell.get_text().get_text())))
            elif n_c < 4*3:
                if cell.get_text().get_text() in format_col.astype(str).values:
                    cell.get_text().set_text('{:,.2f}'.format(float(cell.get_text().get_text())))
            elif n_c < 10*3:
                if cell.get_text().get_text() in format_col.astype(str).values:
                    cell.get_text().set_text('{:,.3f}'.format(float(cell.get_text().get_text())))
            
            else:
                if cell.get_text().get_text() in format_col.astype(str).values:
                    cell.get_text().set_text('{:,.2f}'.format(float(cell.get_text().get_text())))
            n_c = n_c + 1


        format_col = df_combined_t[df_combined_t.columns[1]]
        n_c = 0
        for cell in table.get_celld().values():
            if n_c < 1*3:
                if cell.get_text().get_text() in format_col.astype(str).values:
                    cell.get_text().set_text('{:,.0f}'.format(float(cell.get_text().get_text())))
            elif n_c < 4*3:
                if cell.get_text().get_text() in format_col.astype(str).values:
                    cell.get_text().set_text('{:,.2f}'.format(float(cell.get_text().get_text())))
            elif n_c < 10*3:
                if cell.get_text().get_text() in format_col.astype(str).values:
                    cell.get_text().set_text('{:,.3f}'.format(float(cell.get_text().get_text())))
            
            else:
                if cell.get_text().get_text() in format_col.astype(str).values:
                    cell.get_text().set_text('{:,.2f}'.format(float(cell.get_text().get_text())))
            n_c = n_c + 1

        format_col = df_combined_t[df_combined_t.columns[2]]
        n_c = 0
        for cell in table.get_celld().values():
            if n_c < 1*3:
                if cell.get_text().get_text() in format_col.astype(str).values:
                    cell.get_text().set_text('{:,.0f}'.format(float(cell.get_text().get_text())))
            elif n_c < 4*3:
                if cell.get_text().get_text() in format_col.astype(str).values:
                    cell.get_text().set_text('{:,.2f}'.format(float(cell.get_text().get_text())))
            elif n_c < 10*3:
                if cell.get_text().get_text() in format_col.astype(str).values:
                    cell.get_text().set_text('{:,.3f}'.format(float(cell.get_text().get_text())))
            
            else:
                if cell.get_text().get_text() in format_col.astype(str).values:
                    cell.get_text().set_text('{:,.2f}'.format(float(cell.get_text().get_text())))
            n_c = n_c + 1



        #ax1.text('')
        #fig.tight_layout()
        #categories[0:7] = ['G/GP','A/GP','P/GP','PPP/GP','S/GP','Hits/GP','Blk/GP']
            
        cmap_new = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#4285F4","white",'#FBBC04'])
        colormap_new = plt.get_cmap(cmap_new)
        norm_new = Normalize(vmin=-3, vmax=3)

        color_scheme = [colormap_new(norm_new(x)) for x in player]

        sns.barplot(data=test_filter,x=categories[0:3],y=player[0:3],palette=color_scheme[0:3],edgecolor='black',ax=ax2)

        ax2.set_title("Goals Against Rates Z-Score (min. "+str(min_time)+' TOI)',fontsize=14,fontname='Century Gothic')


        #plt.rcParams['xtick.color']='#333F4B'
        #ax[0][1].set_prop_cycle(ytick.color='#333F4B')


        ax2.set_ylabel('Z-Score', fontsize=15,fontname='Century Gothic')
        # #plt.ylabel('Z-Score', fontsize=15,fontname='Century Gothic')

        # #plt.xlabel('Percentile', fontsize=12, color = '#000000',fontname='Century Gothic')
        # #plt.tick_params(axis='x', which='both', labelsize=10,bottom=False,top=False)
        ax2.set_ylim([-3, 3])
        plt.style.use('classic')
        show_values(ax2,stat = values_1,rank_n=rank_1,fontsize=10)
        ax2.grid(axis = 'y',linestyle = '-', linewidth = 0.5,alpha=0.3)
        ax2.tick_params(axis='x', which='major', labelsize=6)
        ax2.set_axisbelow(True)
        #ax[1].hlines(y=0,xmin=0,xmax=len(player),color='black')


        #plt.savefig('players/'+name+"_"+str(last_games)+'_Z.png')#,bbox_inches="tight")
        # ax[1][0] = sns.barplot(data=test,x=categories,y=player,palette=color_scheme,edgecolor='black')
        # show_values(ax2,stat = values)
        # data_input = df_shots[(df_shots.shooterName==name) & (df_shots.event!='MISS')]
        # sns.kdeplot(data=data_input, x=data_input["yCordAdjusted"]*-1, y=data_input["xCordAdjusted"],fill=True,thresh=0.4,cmap=cmap,ax=ax3)
        # #sns.scatterplot(data=data_input, x=data_input["yCordAdjusted"]*-1, y=data_input["xCordAdjusted"], alpha=1,zorder=25,cmap='Blues',s=400,hue='shotType',palette="Set2")
        # rink = NHLRink(rotation=270)
        # #x, y = rink.convert_xy(x, y)
        # rink.draw(ax=ax3,display_range='dzone')
        # ax3.set_title(name+" Shooting Heat Map",fontsize=16,fontname='Century Gothic')
        #plt.suptitle('NHL Shot Locations ', fontsize=32, y = 0.91)
        #plt.title('All Shots', fontsize=16, y=1.02)
        sns.barplot(x=categories[3:9],y=player[3:9],palette=color_scheme[3:9],edgecolor='black',ax=ax3)
        ax3.set_title("Save% Z-Score (min. "+str(min_time)+' TOI)',fontsize=14,fontname='Century Gothic')
        ax3.grid(axis = 'y',linestyle = '-', linewidth = 0.5,alpha=0.3)
        ax3.set_ylim([-3, 3])
        ax3.set_axisbelow(True)

        ax3.set_ylabel('Z-Score', fontsize=15,fontname='Century Gothic')
        #plt.rcParams['xtick.color']='#333F4B'
        #ax[0][1].set_prop_cycle(ytick.color='#333F4B')


        ax2.set_ylabel('Z-Score', fontsize=15,fontname='Century Gothic')

        def show_values(axs, orient="v", space=-1,stat = [],rank_n=[],fontsize=10):
            def _single(ax):
                if orient == "v":
                    i = 0
                    for p in ax.patches:

                        _x = p.get_x() + p.get_width() / 2
                        _y = p.get_y() + p.get_height() + (p.get_height()*0.01)
                        value = '{:.0f}'.format(p.get_height())
                        value_stat = '{:.3f}'.format(float(stat[i]))
                        rank = rank_n[i]
                        ax.text(_x, -4.2, value_stat, ha="center",fontstyle='italic',fontsize=fontsize)
                        ax.text(_x, -4.7, rank, ha="center",fontstyle='italic',fontsize=fontsize)
                        i = i+1
                elif orient == "h":
                    for p in ax.patches:
                        _x = p.get_x() + p.get_width() + float(space)
                        _y = p.get_y() + p.get_height() - (p.get_height()*0.5)
                        value = '{:.0f}'.format(p.get_width())
                        ax.text(_x, _y, value, ha="left",fontsize=fontsize)

            if isinstance(axs, np.ndarray):
                for idx, ax in np.ndenumerate(axs):
                    _single(ax)
            else:
                _single(axs)



        show_values(ax3,stat = pd.concat([values_2,values_3]),rank_n=rank_2+rank_3,fontsize=10)
        # show_values(ax4,stat = values_3,rank_n=rank_3)


        ax2.text(-0.5, -4.2, '2023-24', ha="right",fontstyle='italic',zorder=1,fontsize=10)
        ax3.text(-0.5, -4.2, '2023-24', ha="right",fontstyle='italic',fontsize=10)
        # ax4.text(-0.5, -4.2, '2022-23', ha="right",fontstyle='italic')


        ax2.text(-0.5, -4.7, 'Rank (of '+str(len(test_filter))+")", ha="right",fontstyle='italic',fontsize=10)
        ax3.text(-0.5, -4.7, 'Rank (of '+str(len(test_filter))+")", ha="right",fontstyle='italic',fontsize=10)
        # ax4.text(-0.5, -4.7, 'Rank (of '+str(len(test_filter))+")", ha="right",fontstyle='italic')


        # ax2.tick_params(axis='x', which='both', labelsize=12,bottom=False,top=False)
        # ax3.tick_params(axis='x', which='both', labelsize=12,bottom=False,top=False)
        # ax4.tick_params(axis='x', which='both', labelsize=12,bottom=False,top=False)


        # sns.lineplot(x=game_log_all.Game,y=game_log_all.rolling(last_games).mean()['TOI'],ax=ax5,color='#FFB000',linewidth = 2,label='TOI/GP',legend=False)

        # ax5.xaxis.set_major_locator(MaxNLocator(integer=True))
        # ax5.set_xlim([last_games, np.max(game_log_all.Game)])
        # axn = ax5.twinx()
        # #sns.lineplot(x=game_log_pp.Game,y=game_log_pp.rolling(last_games).mean()['PP_TOI'],ax=axn,color='#DCAD23',linewidth = 2,label='PP TOI/GP',legend=False)
        # ax5.set_ylim([math.floor(min(game_log_all.TOI)/5)*5, math.ceil(max((game_log_all.rolling(last_games).mean().fillna(0)['TOI']))/5)*5])
        # ax5.grid(axis = 'x',linestyle = '-', linewidth = 0.5,alpha=0.3)
        # ax5.grid(axis = 'y',linestyle = '-', linewidth = 0.5,alpha=0.3)
        # ax5.set_title(str(last_games)+" Game Rolling Average - TOI and PP%",fontsize=14,fontname='Century Gothic')
        # ax5.set(xlabel='Game', ylabel='TOI/GP')
        # axn.set(xlabel='Game', ylabel='PP%')
        # axn.yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
        # axn.set_ylim([0, 1])
        # sns.lineplot(x=game_log_pp.Game,y=game_log_pp.rolling(last_games).sum()['PP_TOI']/game_log_pp.rolling(last_games).sum()['TOI'],ax=axn,color='#648FFF',linewidth = 2,label='PP%',legend=False)
        # #
        # handles, labels = [ax5.get_legend_handles_labels()[0]+axn.get_legend_handles_labels()[0]]+[ax5.get_legend_handles_labels()[1]+axn.get_legend_handles_labels()[1]]
        # ax5.legend(handles, labels, fontsize=10,ncol=2,loc=9)

        # sns.lineplot(x=game_log_all.Game,y=game_log_all.rolling(last_games).mean()['Total Points'],ax=ax6,color='#FFB000',label='Points',linewidth = 2)
        # sns.lineplot(x=game_log_pp.Game,y=game_log_pp.rolling(last_games).mean()['Total Points'],ax=ax6,color='#648FFF',label='PP Points',linewidth = 2)
        # sns.lineplot(x=game_log_all.Game,y=game_log_all.rolling(last_games).mean()['Goals'],ax=ax6,color='#DC267F',label='Goals',linewidth = 2)
        # sns.lineplot(x=game_log_all.Game,y=game_log_all.rolling(last_games).mean()['Total Assists'],ax=ax6,color='#FE6100',label='Assists',linewidth = 2)
        # ax6.legend(fontsize=10,ncol=4,loc=9)
        # ax6.xaxis.set_major_locator(MaxNLocator(integer=True))
        # ax6.set_xlim([last_games, np.max(game_log_all.Game)])
        # ax6.set_ylim([0, round(max((game_log_all.rolling(last_games).mean().fillna(0)['Total Points'])+1)*2)/2])
        # ax6.grid(axis = 'x',linestyle = '-', linewidth = 0.5,alpha=0.3)
        # ax6.grid(axis = 'y',linestyle = '-', linewidth = 0.5,alpha=0.3)
        # ax6.set_title(str(last_games)+" Game Rolling Average - Points",fontsize=14,fontname='Century Gothic')
        # ax6.set(xlabel='Game', ylabel='Value Per Game')
        positive_df = new_df.copy()
        positive_df[positive_df.GSAx < 0] = np.NaN

        negative_df = new_df.copy()
        negative_df[negative_df.GSAx > 0] = np.NaN

        # positive_df = positive_df.sort_values(by='Game')
        # negative_df = negative_df.sort_values(by='Game')

        #sns.lineplot(x=game_log_all_on_ice_small.Game,y=game_log_all_on_ice_small.rolling(last_games).mean()['GSAx'],ax=ax4,color='#FFB000',linewidth = 2,label='Rolling GSAx')
        if not positive_df.dropna().empty and negative_df.dropna().empty:
            sns.lineplot(x=positive_df.Game,y=positive_df.GSAx,ax=ax4,color='#FFB000',linewidth = 1,label='Cumulative GSAx',alpha=1,linestyle='-')
        #threshold_plot(ax4, new_x,new_y, 0, '#648FFF', '#FFB000',linewidth=2)
        elif positive_df.dropna().empty and not negative_df.dropna().empty:
            sns.lineplot(x=negative_df.Game,y=negative_df.GSAx,ax=ax4,color='#648FFF',linewidth = 1,alpha=1,linestyle='-',label='Cumulative GSAx')
            print('this')
        else:
            sns.lineplot(x=positive_df.Game,y=positive_df.GSAx,ax=ax4,color='#FFB000',linewidth = 1,label='Cumulative GSAx',alpha=1,linestyle='-')
            sns.lineplot(x=negative_df.Game,y=negative_df.GSAx,ax=ax4,color='#648FFF',linewidth = 1,alpha=1,linestyle='-')

        #ax4.legend(fontsize=10,ncol=5,loc='upper left')
        
        ax4.xaxis.set_major_locator(MaxNLocator(integer=True))
        ax4.set_xlim([1, np.max(game_log_all_on_ice_small.game)])
        ax4.set_ylim([min(round(min((game_log_all_on_ice_small['GSAx'].cumsum()))*1)/1-1,-1), max(round(max((game_log_all_on_ice_small['GSAx'].cumsum()))*1)/1+2,3)])
        ax4.grid(axis = 'x',linestyle = '-', linewidth = 0.5,alpha=0.3)
        ax4.grid(axis = 'y',linestyle = '-', linewidth = 0.5,alpha=0.3)
        ax4.set_title("Cumulative Goals Saved Above Expected",fontsize=14,fontname='Century Gothic')
        ax4.set(xlabel='Game', ylabel='GSAx')
        ax4.yaxis.set_major_locator(MaxNLocator(integer=True))
        ax4.get_legend().remove()


        fig.text(x=0.05,y=0.045,s='Created By: @TJStats',horizontalalignment='left',fontsize=10)#,fontname='Century Gothic')
        fig.text(x=0.05,y=0.02,s='Data: Natural Stat Trick, CapFriendly, Yahoo Fantasy',horizontalalignment='left',fontsize=10)#,fontname='Century Gothic')
        fig.text(x=0.5,y=0.02,s=str(date.today()),horizontalalignment='center',fontsize=8)#,fontname='Century Gothic')

        # #ax1.set_zorder(2)
        ax4.stackplot(new_df.Game[new_df.GSAx>=0],new_df.GSAx[new_df.GSAx>=0], alpha=0.2,color='#FFB000')
        ax4.stackplot(new_df.Game[new_df.GSAx<0],new_df.GSAx[new_df.GSAx<0], alpha=0.2,color='#648FFF')

        ax2.hlines(y=0,xmin=-0.5, xmax=len(ax2.patches)-0.5, color='black',linewidth=1)
        ax3.hlines(y=0,xmin=-0.5, xmax=len(ax3.patches)-0.5, color='black',linewidth=1)
        ax4.hlines(y=0,xmin=1,xmax=max(game_log_all_on_ice_small['game']),color='black',linewidth=0.75)

        #ax4.stackplot(game_log_all_on_ice_small["Game"], game_log_all_on_ice_small['GSAx'].cumsum(), color=['r' if v < 0 else '#FFB000' for v in game_log_all_on_ice_small['GSAx']],alpha=0.3)
        ax2.tick_params(axis='both', which='major', labelsize=10,bottom=False,top=False)
        ax3.tick_params(axis='both', which='major', labelsize=10,bottom=False,top=False)
        ax4.tick_params(axis='both', which='major', labelsize=10,bottom=False,top=False)
        # im_rain = plt.imread('https://upload.wikimedia.org/wikipedia/commons/thumb/3/31/Rainbow-gradient-fully-saturated.svg/1024px-Rainbow-gradient-fully-saturated.svg.png')
        # ax1 = fig.add_axes([0,0,1,1], anchor='C')
        # ax1.imshow(im_rain,alpha=0.3)
        # ax1.set_aspect('auto')
        # ax1.axis('off')
        for key, cell in table.get_celld().items():
                    cell.set_linewidth(0)

        for key, cell in table_scale.get_celld().items():
                    cell.set_linewidth(0)

        ax2.set_xlim([-0.5, 2.5])
        ax3.set_xlim([-0.5, 5.5])

        plt.tight_layout(pad=0.3, w_pad=1, h_pad=0.5)
        # if not os.path.exists('player_cards/goalies/'+name):
        #     os.makedirs('player_cards/goalies/'+name)

        # # dir = 'players/'
        # # for f in os.listdir(dir):
        # #     os.remove(os.path.join(dir, f))

        # plt.savefig('player_cards/goalies/'+name+'/'+name+"_"+str(last_games)+'_Znew.png',dpi=600,bbox_inches="tight")

        # test = test.fillna(0)
        #test['PP TOI'] = ["%d:%02d" % (int(x),(x*60)%60) if x>0 else '0:00' for x in test['PP TOI']]



app = App(app_ui, server)
#time.sleep(60)