File size: 26,491 Bytes
e0df468
482cf33
2325624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6811ae3
72ba72d
2325624
 
 
 
 
 
 
eaab5cb
72ba72d
2325624
 
07d9b53
2325624
 
 
eaab5cb
72ba72d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2325624
 
 
 
eaab5cb
72ba72d
 
2325624
 
 
 
 
 
 
 
eaab5cb
72ba72d
2325624
 
 
72ba72d
2325624
 
 
 
72ba72d
2325624
 
 
 
d1f3cb7
2325624
d1f3cb7
2325624
 
72ba72d
 
 
 
 
2325624
 
 
 
 
 
72ba72d
2325624
d1f3cb7
2325624
482cf33
2325624
72ba72d
 
2325624
b704539
2325624
 
 
72ba72d
b704539
2325624
 
72ba72d
482cf33
6ff8cda
72ba72d
2325624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ba72d
2325624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ba72d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2325624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff8cda
72ba72d
2325624
 
72ba72d
2325624
 
72ba72d
2325624
 
72ba72d
2325624
 
b704539
2325624
 
72ba72d
2325624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ba72d
2325624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ba72d
2325624
72ba72d
 
2325624
 
 
 
72ba72d
2325624
 
 
 
 
72ba72d
482cf33
475eb00
 
 
 
 
72ba72d
475eb00
 
 
 
 
 
 
 
 
 
72ba72d
475eb00
 
 
 
 
 
 
72ba72d
475eb00
 
 
 
 
 
 
 
72ba72d
475eb00
 
 
72ba72d
475eb00
 
 
72ba72d
 
475eb00
 
 
 
 
 
 
 
72ba72d
475eb00
 
72ba72d
475eb00
 
 
 
72ba72d
475eb00
2325624
475eb00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ba72d
475eb00
 
72ba72d
475eb00
72ba72d
475eb00
 
 
 
72ba72d
475eb00
 
 
72ba72d
475eb00
 
 
 
 
72ba72d
475eb00
 
 
 
72ba72d
475eb00
 
 
72ba72d
475eb00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ba72d
 
475eb00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ba72d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
from scipy import stats
import pickle
import json
from datetime import timedelta
from urllib.request import urlopen
from datetime import date
from datetime import datetime
import pytz
import json
from matplotlib.ticker import MaxNLocator
import matplotlib.font_manager as font_manager
import numpy as np


# team_games_df = pd.read_csv('data/team_games_all.csv',index_col=[0])
# player_games_df = pd.read_csv('data/player_games_cards.csv',index_col=[0]).sort_values(by='date').reset_index(drop=True)
team_abv_nst = pd.read_csv('data/team_abv_nst.csv')
#player_games_df = player_games_df.loc[:, ~player_games_df.columns.str.contains('^Unnamed')]
#team_abv = pd.read_csv('team_abv.csv')
#team_games_df = team_games_df.merge(right=team_abv,left_on='team',right_on='team_name',how='left').drop(columns='team_name')
team_abv = pd.read_csv('data/team_abv.csv')

 
import pickle
from datetime import timedelta

# # Loop over the counter and format the API call
# r = requests.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2022-10-01&endDate=2023-06-01')
# schedule = r.json()

# schedule = json.loads(urlopen('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2023-10-07&endDate=2024-04-19').read())

# def flatten(t):
#     return [item for sublist in t for item in sublist]
 
# game_id = flatten([[x['gamePk'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
# game_type = flatten([[x['gameType'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
# game_date = flatten([[(pd.to_datetime(x['gameDate']) - timedelta(hours=8)) for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
# game_final = flatten([[x['status']['detailedState'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
# game_home = flatten([[x['teams']['home']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
# game_away = flatten([[x['teams']['away']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
 
# schedule_df = pd.DataFrame(data={'game_id': game_id, 'game_type':game_type,'game_date' : game_date, 'game_home' : game_home, 'game_away' : game_away,'status' : game_final})
# schedule_df = schedule_df[schedule_df.game_type == 'R'].reset_index(drop=True)
# schedule_df = schedule_df[schedule_df.status != 'Postponed']
# schedule_df = schedule_df.replace('Montréal Canadiens','Montreal Canadiens')
schedule = pd.read_csv('2024_schedule_href.csv')
#schedule = pd.read_html('https://www.hockey-reference.com/leagues/NHL_2024_games.html')[0]
   #schedule.to_csv('schedule/schedule_'+str(date.today())+'.csv')
#schedule = pd.read_csv('schedule/schedule_'+str(date.today())+'.csv')
schedule = schedule.replace('St Louis Blues','St. Louis Blues')

 
schedule_df = schedule.merge(right=team_abv,left_on='Visitor',right_on='team_name',how='inner',suffixes=['','_away']) 
schedule_df = schedule_df.merge(right=team_abv,left_on='Home',right_on='team_name',how='inner',suffixes=['','_home']) 

schedule_df = schedule_df.rename(columns={'Visitor':'game_away','Home':'game_home','Date':'game_date'}) 

 
schedule_df_merge = schedule_df.merge(right=team_abv,left_on='game_home',right_on='team_name',how='left')
schedule_df_merge = schedule_df_merge.merge(right=team_abv,left_on='game_away',right_on='team_name',how='left')
schedule_df_merge = schedule_df_merge.drop(columns={'team_name_x','team_name_y'})
schedule_df_merge = schedule_df_merge.rename(columns={'team_abv_x' : 'team_abv_home','team_abv_y' : 'team_abv_away'})

 
schedule_df_merge = schedule_df_merge.loc[:,~schedule_df_merge.columns.duplicated()].copy()
#schedule_df_merge.game_date = pd.to_datetime(schedule_df_merge['game_date']).dt.tz_convert(tz='US/Eastern').dt.date
# schedule_df_merge = schedule_df_merge.set_index(pd.DatetimeIndex(schedule_df_merge.game_date).strftime('%Y-%m-%d'))
schedule_df_merge.index = pd.to_datetime(schedule_df_merge.game_date)
schedule_df_merge = schedule_df_merge.drop(columns='game_date')
#schedule_df_merge.index = schedule_df_merge.index.tz_convert('US/Pacific')
schedule_df_merge.index = schedule_df_merge.index.date
schedule_df_merge = schedule_df_merge.sort_index()
schedule_df_merge = schedule_df_merge[schedule_df_merge.index <= date(2024,5,1)]

schedule_df_merge_final = schedule_df_merge[schedule_df_merge.index<date.today()]
schedule_ccount_df = pd.DataFrame(data={'date':list(schedule_df_merge_final.index)*2,'team':list(schedule_df_merge_final.team_abv_away)+list(schedule_df_merge_final.team_abv_home)}).sort_values(by='date').reset_index(drop=True)
schedule_ccount_df['team_game'] = schedule_ccount_df.groupby('team').cumcount()+1
schedule_ccount_df.date = pd.to_datetime(schedule_ccount_df.date)
 
today = pd.to_datetime(datetime.now(pytz.timezone('US/Pacific')).strftime('%Y-%m-%d'))
team_schdule = schedule_df_merge[(schedule_df_merge['team_abv_home']=='EDM')|(schedule_df_merge['team_abv_away']=='EDM')]
team_schdule_live = team_schdule[team_schdule.index <= today]
team_schdule_live.head()
 
team_games_df = pd.read_csv('data/team_games_all.csv',index_col=[0])
player_games_df = pd.read_csv('data/player_games_cards.csv',index_col=[0]).sort_values(by='date').reset_index(drop=True)
team_abv_df = pd.read_csv('data/team_abv.csv')
player_games_df = player_games_df.loc[:, ~player_games_df.columns.str.contains('^Unnamed')]

team_games_df = team_games_df.merge(right=team_abv_df,left_on='team',right_on='team_name',how='left').drop(columns='team_name')

player_games_df = player_games_df.drop_duplicates(subset=['player_id','date'],keep='last').reset_index(drop=True)
player_games_df.date = pd.to_datetime(player_games_df.date)

team_games_df['date'] = pd.to_datetime(team_games_df['date']).dt.date
team_games_df = team_games_df[team_games_df['date']<date.today()]

#schedule_df_merge_final = schedule_df_merge[schedule_df_merge['status']=='Final']
schedule_ccount_df = pd.DataFrame(data={'date':list(schedule_df_merge_final.index)*2,'team':list(schedule_df_merge_final.team_abv_away)+list(schedule_df_merge_final.team_abv_home)}).sort_values(by='date').reset_index(drop=True)
schedule_ccount_df['team_game'] = schedule_ccount_df.groupby('team').cumcount()+1
schedule_ccount_df.date = pd.to_datetime(schedule_ccount_df.date)
team_games_df['team_game'] = team_games_df.groupby('team').cumcount()+1
player_games_df = player_games_df.merge(right=schedule_ccount_df,left_on=['Team','date'],right_on=['team','date'],how='left')
player_games_df['player_game'] = player_games_df.groupby('player_id').cumcount()+1
 
date_range_list = pd.date_range(start=player_games_df.date.min()+timedelta(days=6),end=player_games_df.date.max())

team_abv_nst_dict = {'All':''} | team_abv_nst.set_index('team_abv')['team_name'].to_dict()

position_dict = {'All':'','F':'Forwards','D':'Defense'}
 
player_games_df.player_id = player_games_df.player_id.astype(int)
player_games_df = player_games_df.rename(columns={'Total Points_pp':'PP Points'})

stat_input_list = ['TOI', 'Goals', 'Total Assists',
       'First Assists',  'Total Points', 'PP Points','Shots', 'Hits',
        'Shots Blocked']
 

df_cum_stat_total = player_games_df.groupby(['player_id','Player','Position']).agg(
    GP = ('GP','count'),
   Total_Points = ('Total Points','sum')
        ).reset_index()

 
df_all_sort = df_cum_stat_total.copy()
stat_pick = 'Total_Points'
count=11
not_position = ''
team = ''
df_all_sort = df_all_sort[(df_all_sort['Position']!=not_position)]
df_all_sort[stat_pick+' per game'] = df_all_sort[stat_pick]/df_all_sort['GP']
df_all_sort[stat_pick+' Rank'] = df_all_sort[stat_pick].rank(ascending=False,method='min')
df_all_sort = df_all_sort[df_all_sort[stat_pick+' Rank']<=count]
df_all_sort[stat_pick+' per game Rank'] = df_all_sort[stat_pick+' per game'].rank(ascending=False,method='min')
# #df_all_sort.sort_values(by=[stat_pick,stat_pick+' per game','Total Points'],ascending = (False, False,False))
df_all_sort_list = df_all_sort[df_all_sort[stat_pick+' Rank']<max(df_all_sort[stat_pick+' Rank'])].sort_values(by=[stat_pick,stat_pick+' per game','Total_Points'],ascending = (False, False,False))
# # df_all_sort = df_all_sort.sort_values(by=[stat_pick,stat_pick+' per game','Total Points'],ascending = (False, False,False))[(df_all_sort['Position']!=not_position)&(df_all_sort['Team']!=team)].head(count)['Player']
temp_df = df_all_sort[df_all_sort[stat_pick+' Rank']==max(df_all_sort[stat_pick+' Rank'])]#[stat_pick+' per game Rank'].rank().sort_values(ascending=True).reset_index(drop=True)[count-len(df_all_sort_list)-1]
temp_df['temp'] =  temp_df[stat_pick+' per game Rank'].rank()#.sort_values(ascending=True)#.reset_index(drop=True)
temp_df = temp_df.sort_values(by='temp',ascending=True)#.reset_index(drop=True)
temp = temp_df[temp_df['temp']<=(count-len(df_all_sort_list))]

players_list = list(pd.concat([df_all_sort_list,temp]).reset_index(drop=True)['player_id'])


rookie_df = pd.read_csv('data/player_rookies.csv',index_col=[0])
rookie_list = rookie_df.player_id.values


skater_dict = df_cum_stat_total.sort_values(by=['Total_Points','GP'],ascending=[False,True]).drop_duplicates(subset='player_id').set_index('player_id')#.sort_values(by='Player')
#skater_dict['skater_team'] = skater_dict.Player + ' - ' + skater_dict.Team
skater_dict = skater_dict['Player'].to_dict()
# players_list = list(df_all_sort['Player'])
print(players_list)


from shiny import ui, render, App
from shiny import App, reactive, ui
from shiny.ui import h2, tags
import matplotlib.image as mpimg

# app_ui = ui.page_fluid(

#     # ui.output_plot("plot"),
#     #ui.h2('MLB Batter Launch Angle vs Exit Velocity'),
#     ui.layout_sidebar(
#         ui.panel_sidebar(
#             ui.input_select("id", "Select Batter",batter_dict),

#             ui.input_select("plot_id", "Select Plot",{'scatter':'Scatter Plot','dist':'Distribution Plot'})))
#         ,

#     ui.panel_main(ui.output_plot("plot",height = "750px",width="1250px")),
#     #ui.download_button('test','Download'),
# )
#import shinyswatch
app_ui = ui.page_fluid(
    #shinyswatch.theme.cosmo(),
    ui.layout_sidebar(
     
    # Available themes:
    #  cerulean, cosmo, cyborg, darkly, flatly, journal, litera, lumen, lux,
    #  materia, minty, morph, pulse, quartz, sandstone, simplex, sketchy, slate,
    #  solar, spacelab, superhero, united, vapor, yeti, zephyr
        
      ui.panel_sidebar( 
          ui.input_select("id", "Select Skater (max. 10 Skaters)",skater_dict,width=1,selected=list(players_list[0:10]),selectize=True,multiple=True),
          ui.input_select("stat", "Stat Input",stat_input_list,width=1,size=1,selectize=False,selected='Total Points'),
          ui.input_select("team_select", "Team",team_abv_nst_dict,width=1,size=1,selectize=False,selected='All'),
          ui.input_select("position_select", "Position",position_dict,width=1,size=1,selectize=False,selected='All'),
          ui.input_date("date", "Date input",value = datetime.today().date() - timedelta(days=1),min='2023-10-10', max=datetime.today().date() - timedelta(days=1)),
          ui.input_switch("rookie_switch", "Rookies Only"),
          ui.output_table("result"),
          width=3),
          
         
        
        ui.panel_main(
            
            ui.navset_tab(
                    ui.nav("Chart Races",
                    ui.panel_main(
                        ui.output_plot("plot",height = "1200px",width="1200px")),
                           )
                    
                           

        ))))
        #  ui.row(
        #         ui.column(
        #             3,
        #                 ui.input_date("x", "Date input"),),
        #         ui.column(
        #             1,
#             ui.input_select("level_id", "Select Level",level_dict,width=1)),
#         ui.column(
#             3,
#             ui.input_select("stat_id", "Select Stat",plot_dict_small,width=1)),
#         ui.column(
#             2,
#             ui.input_numeric("n", "Rolling Window Size", value=50)),
#         ),
#             ui.output_table("result_batters")),

        # ui.nav(
        #     "Pitchers",

        #                 ui.row(
        # ui.column(
        #     3,
        #     ui.input_select("id_pitch", "Select Pitcher",pitcher_dict,width=1,selected=675911),
        #     ),
        # ui.column(
        #     1,
        #     ui.input_select("level_id_pitch", "Select Level",level_dict,width=1)),
        # ui.column(
        #     3,
        #     ui.input_select("stat_id_pitch", "Select Stat",plot_dict_small_pitch,width=1)),
        # ui.column(
        #     2,
        #         ui.input_numeric("n_pitch", "Rolling Window Size", value=50)),
        # ),
        #     ui.output_table("result_pitchers")),
#             )
#         )
# )




#from urllib.request import Request, urlopen

# importing OpenCV(cv2) module



def server(input, output, session):


    @reactive.Effect
    def _():

        
        team_select_list = [input.team_select()]    
        position_select_list =  [input.position_select()]    
        
        if team_select_list[0] == 'All':
            team_select_list = team_abv_nst.team_abv.unique()
        
        if position_select_list[0] == 'All':
            position_select_list = player_games_df.Position.unique()     
        
        elif position_select_list[0] == 'F':
            position_select_list = player_games_df[player_games_df.Position != 'D'].Position.unique()     

        else:
            position_select_list = ['D'] 

        print(team_select_list)


        if input.rookie_switch():

            df_cum_stat_total = player_games_df[(player_games_df.date <= pd.to_datetime(input.date()))
                                                &(player_games_df.player_id.isin(rookie_list))
                                                &(player_games_df.Team.isin(team_select_list))
                                                &(player_games_df.Position.isin(position_select_list))].groupby(['player_id','Player','Position']).agg(
                GP = ('GP','count'),
                Total_Points = (f'{input.stat()}','sum')
                    ).reset_index()
            
        else:
            df_cum_stat_total = player_games_df[(player_games_df.date <= pd.to_datetime(input.date()))
                                                &(player_games_df.Team.isin(team_select_list))
                                                &(player_games_df.Position.isin(position_select_list))].groupby(['player_id','Player','Position']).agg(
                GP = ('GP','count'),
                Total_Points = (f'{input.stat()}','sum')
                    ).reset_index()
        
        df_all_sort = df_cum_stat_total.copy()
        stat_pick = 'Total_Points'
        count=6
        not_position = ''
        team = ''
        df_all_sort = df_all_sort[(df_all_sort['Position']!=not_position)]
        df_all_sort[stat_pick+' per game'] = df_all_sort[stat_pick]/df_all_sort['GP']
        df_all_sort[stat_pick+' Rank'] = df_all_sort[stat_pick].rank(ascending=False,method='min')
        df_all_sort = df_all_sort[df_all_sort[stat_pick+' Rank']<=count]
        df_all_sort[stat_pick+' per game Rank'] = df_all_sort[stat_pick+' per game'].rank(ascending=False,method='min')
        # #df_all_sort.sort_values(by=[stat_pick,stat_pick+' per game','Total Points'],ascending = (False, False,False))
        df_all_sort_list = df_all_sort[df_all_sort[stat_pick+' Rank']<max(df_all_sort[stat_pick+' Rank'])].sort_values(by=[stat_pick,stat_pick+' per game','Total_Points'],ascending = (False, False,False))
        # # df_all_sort = df_all_sort.sort_values(by=[stat_pick,stat_pick+' per game','Total Points'],ascending = (False, False,False))[(df_all_sort['Position']!=not_position)&(df_all_sort['Team']!=team)].head(count)['Player']
        temp_df = df_all_sort[df_all_sort[stat_pick+' Rank']==max(df_all_sort[stat_pick+' Rank'])]#[stat_pick+' per game Rank'].rank().sort_values(ascending=True).reset_index(drop=True)[count-len(df_all_sort_list)-1]
        temp_df['temp'] =  temp_df[stat_pick+' per game Rank'].rank()#.sort_values(ascending=True)#.reset_index(drop=True)
        temp_df = temp_df.sort_values(by='temp',ascending=True)#.reset_index(drop=True)
        temp = temp_df[temp_df['temp']<=(count-len(df_all_sort_list))]
        
        players_list_new = list(pd.concat([df_all_sort_list,temp]).reset_index(drop=True)['player_id'])
        
        
        skater_dict = df_cum_stat_total.sort_values(by=['Total_Points','GP'],ascending=[False,True]).drop_duplicates(subset='player_id').set_index('player_id')#.sort_values(by='Player')
        #skater_dict['skater_team'] = skater_dict.Player + ' - ' + skater_dict.Team
        skater_dict = skater_dict['Player'].to_dict()
        # players_list = list(df_all_sort['Player'])

        ui.update_select(
            "id",
            label="Select Skater (max. 10 Skaters)",
            choices=skater_dict,
            selected=list(players_list_new[0:10]))
         

     
    @output
    @render.table
    def result():
        if input.rookie_switch():
    
            return player_games_df[(player_games_df.date <= pd.to_datetime(input.date()))&(player_games_df.player_id.isin(rookie_list))].groupby(['player_id','Player','Position']).agg(
                GP = ('GP','count'),
                Stat = (f'{input.stat()}','sum')
                    ).reset_index().sort_values(by=['Stat','GP'],ascending=[False,True]).reset_index(drop=True)
            
        else:
            return player_games_df[player_games_df.date <= pd.to_datetime(input.date())].groupby(['player_id','Player','Position']).agg(
                GP = ('GP','count'),
                Stat = (f'{input.stat()}','sum')
                    ).reset_index().sort_values(by=['Stat','GP'],ascending=[False,True]).reset_index(drop=True)
        
     
    @output
    @render.plot(alt="A histogram")
    def plot():
     
        team_select_list = [input.team_select()]    
        position_select_list =  [input.position_select()]    
    
        if team_select_list[0] == 'All':
            team_select_title = 'NHL '
        else:
            team_select_title = f'{team_abv_nst_dict[team_select_list[0]]} '
            
        
        if position_select_list[0] == 'All':
            position_select_title = '' 
    
        
        elif position_select_list[0] == 'F':
            position_select_title = 'Forwards '
    
        
        else:
            position_select_title = 'Defense '
    
        
        rookie = ''
        if input.rookie_switch():
            rookie = 'Rookie '
            
        i = 0
        #rookie = ''
        current_season = '2023'
        start_season = '2024'
    
        
        # player_lookup_list = ['Connor McDavid','David Pastrnak','Nathan MacKinnon']
    
        
        type(input.id())
        print(input.id())
        player_lookup_list = list(input.id())[0:10]
    
        
        stat = input.stat()
        sns.set_theme(style="whitegrid", palette="pastel")
        #print(type([input.date()))
        date_range_list = [pd.to_datetime(input.date())]
        for k in range(len(date_range_list)):
            print(date_range_list[k])
            stat = input.stat()
            team_schedule_url_merge = []
            max_games_player = []
            max_games_team = []
            max_stat = []
            per_game = False
            for i in range(0,len(player_lookup_list)):
                team_schedule_url_merge.append(player_games_df[(player_games_df.player_id == int(player_lookup_list[i]))&(date_range_list[k] >= player_games_df.date)].reset_index(drop=True))
                #print('touble',i, player_lookup_list[i],len(player_games_df[(player_games_df.player_id == player_lookup_list[i])]))
                team_schedule_url_merge[i].index = team_schedule_url_merge[i].team_game
                team_schedule_url_merge[i] = team_schedule_url_merge[i].reindex(np.arange(team_schedule_url_merge[i].team_game.min(), team_schedule_url_merge[i].team_game.max() + 1)).reset_index(drop=True)
                #team_schedule_url_merge[0]['team_game'] = team_schedule_url_merge[0]['index']
                #team_schedule_url_merge[0]['player_game'] = 
                #schedule_ccount_df[schedule_ccount_df['team'].isin(team_schedule_url_merge[0].Team.unique())].merge(right=team_schedule_url_merge[0],left_on=['date','team'],right_on=['date','Team'],how='left')
    
        
                team_schedule_url_merge[i]['stat'] = team_schedule_url_merge[i][stat].cumsum()
    
        
    
        
                #team_schedule_url_merge[i]['stat'] = team_schedule_url_merge[i][stat_pick]
                team_schedule_url_merge[i] = team_schedule_url_merge[i].append(team_schedule_url_merge[i]).sort_index()
                team_schedule_url_merge[i] = team_schedule_url_merge[i].append(team_schedule_url_merge[i].iloc[0]).sort_index().reset_index(drop=True)
    
                team_schedule_url_merge[i]['team_game'][0] = 0
                team_schedule_url_merge[i]['player_game'][0] = 0
                team_schedule_url_merge[i]['stat'][0] = 0
    
        
                for j in range(1,len(team_schedule_url_merge[i]),2):
                    team_schedule_url_merge[i]['player_game'][j] = team_schedule_url_merge[i]['player_game'][j]-1
                    team_schedule_url_merge[i]['team_game'][j] = team_schedule_url_merge[i]['team_game'][j]-1
                    team_schedule_url_merge[i]['stat'][j] = team_schedule_url_merge[i]['stat'][j] - team_schedule_url_merge[i][stat][j]
    
                if len(team_schedule_url_merge[i]) >3:     
                    if pd.isna(team_schedule_url_merge[i].iloc[3]['player_game']) and pd.isna(team_schedule_url_merge[i].iloc[1]['player_game']) == True:
                        team_schedule_url_merge[i]['player_game'][2] = np.nan
                        team_schedule_url_merge[i]['stat'][2] = np.nan
    
                if len(team_schedule_url_merge[i]) >3:   
                    if pd.isna(team_schedule_url_merge[i].iloc[len(team_schedule_url_merge[i])-1]['player_game']) == True:
                        team_schedule_url_merge[i]['stat'][len(team_schedule_url_merge[i])-1] = np.nanmax(team_schedule_url_merge[i]['stat'])
    
                if not (team_schedule_url_merge[i]['team_game'].values[1] == team_schedule_url_merge[i]['player_game'].values[0]):   
                    team_schedule_url_merge[i].loc[0,'team_game'] = np.nan
        
        
                max_games_player.append(np.around(np.nanmax(team_schedule_url_merge[i]['player_game'])))
                max_games_team.append(np.around(np.nanmax(team_schedule_url_merge[i]['team_game'])))
                max_stat.append((np.around(np.nanmax(team_schedule_url_merge[i]['stat']))))
    
        
            fig, ax = plt.subplots(figsize=(15,15))
            cgfont = {'fontname':'Century Gothic'}
            font = font_manager.FontProperties(family='Century Gothic',
                                                style='normal', size=14)
    
            ax.axhline(0,color='black',linestyle ="--",linewidth=2,alpha=1.0,label='Missed Games')
            ax.axhline(0,color='black',linestyle ="-",linewidth=2,alpha=1.0)
    
            if 'Total' in stat:
                stat = stat.replace('Total ',"")
    
    
            colour_scheme = ['#648FFF','#785EF0','#DC267F','#FE6100','#FFB000','#FAEF3B','#861318','#2ED3BC','#341BBF','#B37E2C']
    
        
            for i in range(len(team_schedule_url_merge)):
                sns.lineplot(team_schedule_url_merge[i].reset_index()['team_game'],team_schedule_url_merge[i].reset_index()['stat'],linewidth=3-i*.2,color=colour_scheme[i])
                plt.plot(team_schedule_url_merge[i]['team_game'],team_schedule_url_merge[i]['stat'],color=ax.lines[i*2+2].get_color(),label=str(i+1)+'. '+team_schedule_url_merge[i]['Player'][0]+', '+str(int(max_stat[i]))+' '+stat+' in '+str(int(max(team_schedule_url_merge[i]['player_game'])))+' Games',linewidth=6)
                ax.lines[i*2+2].set_linestyle("--")
    
        
            fig.set_facecolor('#ffffff')
            ax.set(xlim=(0,max([team_schedule_url_merge[x].team_game.max() for x in range(len(team_schedule_url_merge))])))
            ax.set(ylim=(0,max([team_schedule_url_merge[x].stat.max() for x in range(len(team_schedule_url_merge))])))
    
            ax.legend_.remove()
    
            if per_game == False:
                fig.suptitle(f'{rookie}{team_select_title}{position_select_title}{stat} Race',y=.98,fontsize=32,color='black',**cgfont)
                ax.set_ylabel(stat,fontsize=20,color='black',**cgfont)
            # else:
            # fig.suptitle(stat+' Per Game, All Situations',y=.99,fontsize=48,color='black',**cgfont)
            # ax.set_ylabel(stat+"/GP",fontsize=20,color='black',**cgfont)
            ax.set_title(str(current_season)[0:4]+'-'+str(start_season)[-4:]+' Season',y=1.01,fontsize=18,color='black',**cgfont,x=0,ha='left')
            ax.set_xlabel('Team Game',fontsize=20,color='black',**cgfont)
            ax.tick_params(axis="x", labelsize=24,colors='black')
            ax.set_facecolor('#ffffff')
            ax.xaxis.set_major_locator(MaxNLocator(integer=True))
            ax.tick_params(axis="y", labelsize=24,colors='black')
            ax.yaxis.set_major_locator(MaxNLocator(integer=True))
        
            fig.text(x=0.025,y=0.01,s="Created By: @TJStats",color='black', fontsize=20, horizontalalignment='left',**cgfont)
            fig.text(x=0.975,y=0.01,s="Data: Natural Stat Trick",color='black', fontsize=20, horizontalalignment='right',**cgfont)
            fig.text(x=.975,y=0.92,s='Date: '+input.date().strftime('%B %d, %Y'),color='black', fontsize=18, horizontalalignment='right',**cgfont)
    
            ax.legend(prop=font,bbox_to_anchor=(0.01, 0.99),loc='upper left',framealpha=1,frameon=True)
            plt.tight_layout()
            #fig.savefig('gif_race/'+stat+rookie+str(date_range_list[k].date())+'.png', facecolor=fig.get_facecolor(), edgecolor='none',bbox_inches='tight',dpi=100)
            #plt.close()
            #fig.legend(prop=font,loc='best',framealpha=1,frameon=True)

 
app = App(app_ui, server)