Spaces:
Running
Running
File size: 7,016 Bytes
efd6469 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"import requests\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib.pyplot import figure\n",
"from matplotlib.offsetbox import OffsetImage, AnnotationBbox\n",
"from scipy import stats\n",
"import matplotlib.lines as mlines\n",
"import matplotlib.transforms as mtransforms\n",
"import numpy as np\n",
"import time\n",
"#import plotly.express as px\n",
"#!pip install chart_studio\n",
"#import chart_studio.tools as tls\n",
"from bs4 import BeautifulSoup\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import matplotlib.font_manager as font_manager\n",
"from datetime import datetime\n",
"import pytz\n",
"from matplotlib.ticker import MaxNLocator\n",
"from matplotlib.patches import Ellipse\n",
"import matplotlib.transforms as transforms\n",
"from matplotlib.gridspec import GridSpec\n",
"from datasets import load_dataset"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Starting Everything:\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset csv (C:/Users/thoma/.cache/huggingface/datasets/nesticot___csv/nesticot--mlb_data-a391519415fcbccf/0.0.0/6954658bab30a358235fa864b05cf819af0e179325c740e4bc853bcc7ec513e1)\n",
"100%|ββββββββββ| 1/1 [00:00<00:00, 2.02it/s]\n"
]
}
],
"source": [
"\n",
"colour_palette = ['#FFB000','#648FFF','#785EF0',\n",
" '#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']\n",
"\n",
"print('Starting Everything:')\n",
"# exit_velo_df = milb_a_ev_df.append([triple_a_ev_df,double_a_ev_df,a_high_a_ev_df,single_a_ev_df]).reset_index(drop=True)\n",
"# player_df_all = mlb_a_player_df.append([triple_a_player_df,double_a_player_df,a_high_a_player_df,single_a_player_df]).reset_index(drop=True)\n",
"# exit_velo_df = pd.read_csv('exit_velo_df_all.csv',index_col=[0])\n",
"# player_df_all = pd.read_csv('player_df_all.csv',index_col=[0])\n",
"\n",
"# pa_df = pd.read_csv('pa_df_all.csv',index_col=[0])\n",
"# pa_df_full_na = pa_df.dropna()\n",
"\n",
"### Import Datasets\n",
"dataset = load_dataset('nesticot/mlb_data', data_files=['a_pitch_data_2023.csv',\n",
" ])\n",
"dataset_train = dataset['train']\n",
"exit_velo_df = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)\n",
"colour_palette = ['#FFB000','#648FFF','#785EF0',\n",
" '#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 True\n",
"1 True\n",
"2 True\n",
"3 True\n",
"4 True\n",
" ... \n",
"575260 True\n",
"575261 True\n",
"575262 True\n",
"575263 True\n",
"575264 True\n",
"Name: is_pitch, Length: 575265, dtype: bool"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"exit_velo_df['is_pitch']"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"tl_df = exit_velo_df[exit_velo_df['batter_id'] == 699073].groupby(['batter_id','batter_name','batter_hand']).agg(\n",
" pitches = ('is_pitch','sum'),\n",
" swings = ('is_swing','sum'),\n",
" whiffs = ('is_whiff','sum')\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"tl_df['whiff_rate'] = tl_df['whiffs'] / tl_df['swings']"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th>pitches</th>\n",
" <th>swings</th>\n",
" <th>whiffs</th>\n",
" <th>whiff_rate</th>\n",
" </tr>\n",
" <tr>\n",
" <th>batter_id</th>\n",
" <th>batter_name</th>\n",
" <th>batter_hand</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">699073</th>\n",
" <th rowspan=\"2\" valign=\"top\">Thayron Liranzo</th>\n",
" <th>L</th>\n",
" <td>1344</td>\n",
" <td>554</td>\n",
" <td>189</td>\n",
" <td>0.341155</td>\n",
" </tr>\n",
" <tr>\n",
" <th>R</th>\n",
" <td>343</td>\n",
" <td>160</td>\n",
" <td>60</td>\n",
" <td>0.375</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" pitches swings whiffs whiff_rate\n",
"batter_id batter_name batter_hand \n",
"699073 Thayron Liranzo L 1344 554 189 0.341155\n",
" R 343 160 60 0.375"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tl_df"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|