File size: 7,016 Bytes
efd6469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import time\n",
    "import requests\n",
    "import pandas as pd\n",
    "import seaborn as sns\n",
    "import matplotlib.pyplot as plt\n",
    "from matplotlib.pyplot import figure\n",
    "from matplotlib.offsetbox import OffsetImage, AnnotationBbox\n",
    "from scipy import stats\n",
    "import matplotlib.lines as mlines\n",
    "import matplotlib.transforms as mtransforms\n",
    "import numpy as np\n",
    "import time\n",
    "#import plotly.express as px\n",
    "#!pip install chart_studio\n",
    "#import chart_studio.tools as tls\n",
    "from bs4 import BeautifulSoup\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "import matplotlib.font_manager as font_manager\n",
    "from datetime import datetime\n",
    "import pytz\n",
    "from matplotlib.ticker import MaxNLocator\n",
    "from matplotlib.patches import Ellipse\n",
    "import matplotlib.transforms as transforms\n",
    "from matplotlib.gridspec import GridSpec\n",
    "from datasets import load_dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Starting Everything:\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Found cached dataset csv (C:/Users/thoma/.cache/huggingface/datasets/nesticot___csv/nesticot--mlb_data-a391519415fcbccf/0.0.0/6954658bab30a358235fa864b05cf819af0e179325c740e4bc853bcc7ec513e1)\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00,  2.02it/s]\n"
     ]
    }
   ],
   "source": [
    "\n",
    "colour_palette = ['#FFB000','#648FFF','#785EF0',\n",
    "                  '#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']\n",
    "\n",
    "print('Starting Everything:')\n",
    "# exit_velo_df = milb_a_ev_df.append([triple_a_ev_df,double_a_ev_df,a_high_a_ev_df,single_a_ev_df]).reset_index(drop=True)\n",
    "# player_df_all = mlb_a_player_df.append([triple_a_player_df,double_a_player_df,a_high_a_player_df,single_a_player_df]).reset_index(drop=True)\n",
    "# exit_velo_df = pd.read_csv('exit_velo_df_all.csv',index_col=[0])\n",
    "# player_df_all = pd.read_csv('player_df_all.csv',index_col=[0])\n",
    "\n",
    "# pa_df = pd.read_csv('pa_df_all.csv',index_col=[0])\n",
    "# pa_df_full_na = pa_df.dropna()\n",
    "\n",
    "### Import Datasets\n",
    "dataset = load_dataset('nesticot/mlb_data', data_files=['a_pitch_data_2023.csv',\n",
    "                                                         ])\n",
    "dataset_train = dataset['train']\n",
    "exit_velo_df = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)\n",
    "colour_palette = ['#FFB000','#648FFF','#785EF0',\n",
    "                  '#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0         True\n",
       "1         True\n",
       "2         True\n",
       "3         True\n",
       "4         True\n",
       "          ... \n",
       "575260    True\n",
       "575261    True\n",
       "575262    True\n",
       "575263    True\n",
       "575264    True\n",
       "Name: is_pitch, Length: 575265, dtype: bool"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "exit_velo_df['is_pitch']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "tl_df = exit_velo_df[exit_velo_df['batter_id'] == 699073].groupby(['batter_id','batter_name','batter_hand']).agg(\n",
    "    pitches = ('is_pitch','sum'),\n",
    "    swings = ('is_swing','sum'),\n",
    "    whiffs = ('is_whiff','sum')\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "tl_df['whiff_rate'] = tl_df['whiffs'] / tl_df['swings']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th>pitches</th>\n",
       "      <th>swings</th>\n",
       "      <th>whiffs</th>\n",
       "      <th>whiff_rate</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>batter_id</th>\n",
       "      <th>batter_name</th>\n",
       "      <th>batter_hand</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th rowspan=\"2\" valign=\"top\">699073</th>\n",
       "      <th rowspan=\"2\" valign=\"top\">Thayron Liranzo</th>\n",
       "      <th>L</th>\n",
       "      <td>1344</td>\n",
       "      <td>554</td>\n",
       "      <td>189</td>\n",
       "      <td>0.341155</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>R</th>\n",
       "      <td>343</td>\n",
       "      <td>160</td>\n",
       "      <td>60</td>\n",
       "      <td>0.375</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                       pitches swings whiffs whiff_rate\n",
       "batter_id batter_name     batter_hand                                  \n",
       "699073    Thayron Liranzo L               1344    554    189   0.341155\n",
       "                          R                343    160     60      0.375"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tl_df"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}