File size: 37,689 Bytes
968950a 6e4417c 0550419 6e4417c ecc19a9 6e4417c 0550419 6e4417c d5ac99b 0550419 d5ac99b 2301116 6e4417c 0550419 7d16584 6e4417c 95914a4 6e4417c a19372a 7b5087f 6e4417c a19372a 0550419 6e4417c ddc735d 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 ddc735d 6e4417c 0550419 6d0de70 6e4417c b9f6a60 0550419 b9f6a60 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 968950a 6e4417c 968950a 6e4417c 0550419 968950a 6e4417c 968950a 6e4417c 6d0de70 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 ccc852f 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 5bc5447 0550419 5bc5447 0550419 5bc5447 0550419 5bc5447 0550419 5bc5447 0550419 5bc5447 0550419 5bc5447 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6d0de70 0550419 6d0de70 0550419 6d0de70 0550419 6d0de70 0550419 6d0de70 0550419 6d0de70 0550419 6d0de70 0550419 6d0de70 0550419 968950a 0550419 968950a 0550419 968950a 0550419 968950a 0550419 6d0de70 0550419 6d0de70 6e4417c 0550419 6e4417c 0550419 968950a 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 968950a 0550419 968950a 0550419 968950a 6e4417c 0550419 968950a 0550419 968950a 0550419 968950a 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 6e4417c 0550419 5bc5447 0550419 5bc5447 6e4417c 0550419 968950a 0550419 968950a 0550419 968950a 0550419 968950a 0550419 968950a 0550419 968950a 0550419 968950a 0550419 968950a 0550419 968950a 0550419 968950a 0550419 6e4417c 0550419 968950a 6e4417c 968950a 6e4417c 0550419 6e4417c 0550419 968950a 0550419 968950a 0550419 968950a 6e4417c 968950a 6e4417c 0550419 6e4417c 968950a 0550419 968950a 0550419 968950a 0550419 968950a 6d0de70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
#import pitch_summary_functions as psf
import requests
import matplotlib
from api_scraper import MLB_Scrape
from shinywidgets import output_widget, render_widget
import shinyswatch
season = 2024
level = 'mlb'
colour_palette = ['#FFB000','#648FFF','#785EF0',
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']
import datasets
from datasets import load_dataset
### Import Datasets
dataset = load_dataset('nesticot/mlb_data', data_files=[f'{level}_pitch_data_{season}.csv' ])
dataset_train = dataset['train']
df_2024 = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True).drop_duplicates(subset=['play_id'],keep='last')
# df_2024 = pd.read_csv('C:/Users/thoma/Google Drive/Python/Baseball/season_stats/2024/2024_regular_data.csv',index_col=[0])
# ### Import Datasets
# import datasets
# from datasets import load_dataset
# dataset = load_dataset('nesticot/mlb_data', data_files=['mlb_pitch_data_2020.csv' ])
# dataset_train = dataset['train']
# df_2024 = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)
### PITCH COLOURS ###
pitch_colours = {
'Four-Seam Fastball':'#FF007D',#BC136F
'Sinker':'#98165D',#DC267F
'Cutter':'#BE5FA0',
'Changeup':'#F79E70',#F75233
'Splitter':'#FE6100',#F75233
'Screwball':'#F08223',
'Forkball':'#FFB000',
'Slider':'#67E18D',#1BB999#785EF0
'Sweeper':'#1BB999',#37CD85#904039
'Slurve':'#376748',#785EF0#549C07#BEABD8
'Knuckle Curve':'#311D8B',
'Curveball':'#3025CE',
'Slow Curve':'#274BFC',
'Eephus':'#648FFF',
'Knuckleball':'#867A08',
'Pitch Out':'#472C30',
'Other':'#9C8975',
}
import pitcher_update as pu
df_2024 = pu.df_update(df_2024)
df_2024['pitch_count_hand'] = df_2024.groupby(['pitcher_id','batter_hand'])['start_speed'].transform('count')
# DEFINE STRIKE ZONE
strike_zone = pd.DataFrame({
'PlateLocSide': [-0.9, -0.9, 0.9, 0.9, -0.9],
'PlateLocHeight': [1.5, 3.5, 3.5, 1.5, 1.5]
})
### STRIKE ZONE ###
def draw_line(axis,alpha_spot=1,catcher_p = True):
axis.plot(strike_zone['PlateLocSide'], strike_zone['PlateLocHeight'], color='black', linewidth=1.3,zorder=3,alpha=alpha_spot,)
# ax.plot([-0.2833333, -0.2833333], [1.6, 3.5], color='black', linestyle='dashed',alpha=alpha_spot,zorder=3)
# ax.plot([0.2833333, 0.2833333], [1.6, 3.5], color='black', linestyle='dashed',alpha=alpha_spot,zorder=3)
# ax.plot([-0.85, 0.85], [2.2, 2.2], color='black', linestyle='dashed',alpha=alpha_spot,zorder=3)
# ax.plot([-0.85, 0.85], [2.9, 2.9], color='black', linestyle='dashed',alpha=alpha_spot,zorder=3)
if catcher_p:
# Add dashed line
# Add home plate
axis.plot([-0.708, 0.708], [0.15, 0.15], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([-0.708, -0.708], [0.15, 0.3], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([-0.708, 0], [0.3, 0.5], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([0, 0.708], [0.5, 0.3], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([0.708, 0.708], [0.3, 0.15], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
else:
axis.plot([-0.708, 0.708], [0.4, 0.4], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([-0.708, -0.9], [0.4, -0.1], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([-0.9, 0], [-0.1, -0.35], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([0, 0.9], [-.35, -0.1], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([0.9, 0.708], [-0.1,0.4], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
pitcher_dicts = df_2024.set_index('pitcher_id')['pitcher_name'].sort_values().to_dict()
team_logos = pd.read_csv('team_logos.csv')
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#648FFF','#FFFFFF','#FFB000',])
cmap_sum2 = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#FFFFFF','#FFB000',])
from urllib.request import Request, urlopen
from shiny import App, reactive, ui, render
from shiny.ui import h2, tags
# importing OpenCV(cv2) module
app_ui = ui.page_fluid(
ui.tags.div(
{"style": "width:90%;margin: 0 auto;max-width: 1600px;"},
ui.tags.style(
"""
h4 {
margin-top: 1em;font-size:35px;
}
h2{
font-size:25px;
}
"""
),
shinyswatch.theme.simplex(),
ui.tags.h4("TJStats"),
ui.tags.i("Baseball Analytics and Visualizations"),
ui.tags.h5("Pitcher Heat Maps"),
ui.row(
ui.layout_sidebar(
ui.panel_sidebar(
ui.input_select('player_id','Select Player',pitcher_dicts,selectize=True,multiple=False),
ui.output_ui('game_id_select','Date Range'),
ui.output_ui('pitch_type_select','Select Pitch Type'),
ui.input_action_button("go", "Generate",class_="btn-primary"),width=2
),
ui.panel_main(
ui.navset_tab(
# ui.nav("Raw Data",
# ui.output_data_frame("raw_table")),
ui.nav("Season Summary",
ui.output_plot('plot',
width='1600px',
height='900px')),id="my_tabs"))))))
#print(app_ui)
def server(input, output, session):
@render.ui
def game_id_select():
# @reactive.Effect
if input.my_tabs() == 'Season Summary':
return ui.input_date_range("date_range_id", "Date range input",start = df_2024.game_date.min(),
end = df_2024.game_date.max(),width=2,min=df_2024.game_date.min(),
max=df_2024.game_date.max()),
@render.ui
def pitch_type_select():
pitch_dicts = df_2024[(df_2024['pitcher_id']==int(input.player_id()))].set_index('pitch_type')['pitch_description'].sort_values().to_dict()
# @reactive.Effect
return ui.input_select('pitch_type','Select Pitch Type',pitch_dicts,selectize=True,multiple=False)
@output
@render.plot
@reactive.event(input.go, ignore_none=False)
def plot():
#fig, ax = plt.subplots(3, 2, figsize=(9, 9))
font_properties = {'family': 'calibi', 'size': 12}
font_properties_titles = {'family': 'calibi', 'size': 20}
font_properties_axes = {'family': 'calibi', 'size': 16}
if len((input.player_id()))<1:
fig, ax = plt.subplots(1, 1, figsize=(9, 9))
ax.text(x=0.5,y=0.5,s='Please Select\nA Player',fontsize=150,ha='center')
ax.grid('off')
return
pitcher_input = int(input.player_id())
pitch_input = input.pitch_type()
df_plot_full = df_2024[(df_2024['pitcher_id']==pitcher_input)]
df_plot_full['h_s_b'] = df_plot_full.groupby(['batter_hand','strikes', 'balls']).transform('count')['pitcher_id']
df_plot_full['h_s_b_pitch'] = df_plot_full.groupby(['batter_hand','strikes', 'balls','pitch_type']).transform('count')['pitcher_id']
df_plot_full['h_s_b_pitch_percent'] = df_plot_full['h_s_b_pitch']/df_plot_full['h_s_b']
df_plot = df_plot_full[(df_plot_full['pitch_type']==pitch_input)]
df_plot = df_plot[(pd.to_datetime(df_plot['game_date']).dt.date>=input.date_range_id()[0])&
(pd.to_datetime(df_plot['game_date']).dt.date<=input.date_range_id()[1])]
print("THIS IS HERE")
print(df_plot)
pivot_table_l = df_plot[df_plot['batter_hand'].isin(['L'])].groupby(['batter_hand','strikes', 'balls'])[['h_s_b_pitch_percent']].mean().reset_index().pivot('strikes','balls','h_s_b_pitch_percent')#.fillna(0).style.background_gradient(cmap=cmap_sum2, axis=None).format("{:.0%}")
# Create a new index and columns range
new_index = range(3)
new_columns = range(4)
# Reindex the pivot table
pivot_table_l = pivot_table_l.reindex(index=new_index, columns=new_columns)
# Fill any missing values with 0
pivot_table_l = pivot_table_l.fillna(0)
pivot_table_l = df_plot[df_plot['batter_hand']=='L'].groupby(['batter_hand','strikes', 'balls'])[['h_s_b_pitch_percent']].mean().reset_index().pivot('strikes','balls','h_s_b_pitch_percent')#.fillna(0).style.background_gradient(cmap=cmap_sum2, axis=None).format("{:.0%}")
# Create a new index and columns range
new_index = range(3)
new_columns = range(4)
# Reindex the pivot table
pivot_table_l = pivot_table_l.reindex(index=new_index, columns=new_columns)
# Fill any missing values with 0
pivot_table_l = pivot_table_l.fillna(0)
pivot_table_r = df_plot[df_plot['batter_hand']=='R'].groupby(['batter_hand','strikes', 'balls'])[['h_s_b_pitch_percent']].mean().reset_index().pivot('strikes','balls','h_s_b_pitch_percent')#.fillna(0).style.background_gradient(cmap=cmap_sum2, axis=None).format("{:.0%}")
# Create a new index and columns range
new_index = range(3)
new_columns = range(4)
# Reindex the pivot table
pivot_table_r = pivot_table_r.reindex(index=new_index, columns=new_columns)
# Fill any missing values with 0
pivot_table_r = pivot_table_r.fillna(0)
# Assuming you have a DataFrame called 'df_plot_full' with columns 'pitch_type', 'strikes', and 'balls'
# Filter the dataset to include only slider pitches
# slider_pitches = df_plot_full[df_plot_full['pitch_type'] == 'SL']
# Group the filtered dataset by strike and ball counts
# grouped_counts = slider_pitches.groupby(['pitcher_hand','strikes', 'balls']).size().reset_index(name='total_pitches')
# Calculate the proportion of slider pitches for each strike and ball count
# grouped_counts['proportion'] = grouped_counts['total_pitches'] / grouped_counts['total_pitches'].sum()
# Print the resulting DataFrame
df_summ = df_plot.groupby(['batter_hand']).agg(
pitch_count = ('pitch_count_hand','max'),
pa = ('pa','sum'),
ab = ('ab','sum'),
obp_pa = ('obp','sum'),
hits = ('hits','sum'),
on_base = ('on_base','sum'),
k = ('k','sum'),
bb = ('bb','sum'),
bb_minus_k = ('bb_minus_k','sum'),
csw = ('csw','sum'),
bip = ('bip','sum'),
bip_div = ('bip_div','sum'),
tb = ('tb','sum'),
woba = ('woba','sum'),
woba_contact = ('woba_contact','sum'),
xwoba = ('woba_pred','sum'),
xwoba_contact = ('woba_pred_contact','sum'),
woba_codes = ('woba_codes','sum'),
hard_hit = ('hard_hit','sum'),
barrel = ('barrel','sum'),
sweet_spot = ('sweet_spot','sum'),
max_launch_speed = ('launch_speed','max'),
launch_speed = ('launch_speed','mean'),
launch_angle = ('launch_angle','mean'),
pitches = ('is_pitch','sum'),
swings = ('swings','sum'),
in_zone = ('in_zone','sum'),
out_zone = ('out_zone','sum'),
whiffs = ('whiffs','sum'),
zone_swing = ('zone_swing','sum'),
zone_contact = ('zone_contact','sum'),
ozone_swing = ('ozone_swing','sum'),
ozone_contact = ('ozone_contact','sum'),
ground_ball = ('trajectory_ground_ball','sum'),
line_drive = ('trajectory_line_drive','sum'),
fly_ball =('trajectory_fly_ball','sum'),
pop_up = ('trajectory_popup','sum'),
attack_zone = ('attack_zone','count'),
heart = ('heart','sum'),
shadow = ('shadow','sum'),
chase = ('chase','sum'),
waste = ('waste','sum'),
heart_swing = ('heart_swing','sum'),
shadow_swing = ('shadow_swing','sum'),
chase_swing = ('chase_swing','sum'),
waste_swing = ('waste_swing','sum'),
heart_whiff = ('heart_whiff','sum'),
shadow_whiff = ('shadow_whiff','sum'),
chase_whiff = ('chase_whiff','sum'),
waste_whiff = ('waste_whiff','sum'),
).reset_index()
df_summ['avg'] = [df_summ.hits[x]/df_summ.ab[x] if df_summ.ab[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['obp'] = [df_summ.on_base[x]/df_summ.obp_pa[x] if df_summ.obp_pa[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['slg'] = [df_summ.tb[x]/df_summ.ab[x] if df_summ.ab[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['ops'] = df_summ['obp']+df_summ['slg']
df_summ['k_percent'] = [df_summ.k[x]/df_summ.pa[x] if df_summ.pa[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['bb_percent'] =[df_summ.bb[x]/df_summ.pa[x] if df_summ.pa[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['bb_minus_k_percent'] =[(df_summ.bb_minus_k[x])/df_summ.pa[x] if df_summ.pa[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['bb_over_k_percent'] =[df_summ.bb[x]/df_summ.k[x] if df_summ.k[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['csw_percent'] =[df_summ.csw[x]/df_summ.pitches[x] if df_summ.pitches[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['sweet_spot_percent'] = [df_summ.sweet_spot[x]/df_summ.bip_div[x] if df_summ.bip_div[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['woba_percent'] = [df_summ.woba[x]/df_summ.woba_codes[x] if df_summ.woba_codes[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['woba_percent_contact'] = [df_summ.woba_contact[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
#df_summ['hard_hit_percent'] = [df_summ.sweet_spot[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['hard_hit_percent'] = [df_summ.hard_hit[x]/df_summ.bip_div[x] if df_summ.bip_div[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['barrel_percent'] = [df_summ.barrel[x]/df_summ.bip_div[x] if df_summ.bip_div[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['zone_contact_percent'] = [df_summ.zone_contact[x]/df_summ.zone_swing[x] if df_summ.zone_swing[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['zone_swing_percent'] = [df_summ.zone_swing[x]/df_summ.in_zone[x] if df_summ.in_zone[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['zone_percent'] = [df_summ.in_zone[x]/df_summ.pitches[x] if df_summ.pitches[x] > 0 else np.nan for x in range(len(df_summ))]
df_summ['chase_percent'] = [df_summ.ozone_swing[x]/(df_summ.pitches[x] - df_summ.in_zone[x]) if (df_summ.pitches[x]- df_summ.in_zone[x]) != 0 else np.nan for x in range(len(df_summ))]
df_summ['chase_contact'] = [df_summ.ozone_contact[x]/df_summ.ozone_swing[x] if df_summ.ozone_swing[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['swing_percent'] = [df_summ.swings[x]/df_summ.pitches[x] if df_summ.pitches[x] > 0 else np.nan for x in range(len(df_summ))]
df_summ['whiff_rate'] = [df_summ.whiffs[x]/df_summ.swings[x] if df_summ.swings[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['swstr_rate'] = [df_summ.whiffs[x]/df_summ.pitches[x] if df_summ.pitches[x] > 0 else np.nan for x in range(len(df_summ))]
df_summ['ground_ball_percent'] = [df_summ.ground_ball[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['line_drive_percent'] = [df_summ.line_drive[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['fly_ball_percent'] = [df_summ.fly_ball[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['pop_up_percent'] = [df_summ.pop_up[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['heart_zone_percent'] = [df_summ.heart[x]/df_summ.attack_zone[x] if df_summ.attack_zone[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['shadow_zone_percent'] = [df_summ.shadow[x]/df_summ.attack_zone[x] if df_summ.attack_zone[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['chase_zone_percent'] = [df_summ.chase[x]/df_summ.attack_zone[x] if df_summ.attack_zone[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['waste_zone_percent'] = [df_summ.waste[x]/df_summ.attack_zone[x] if df_summ.attack_zone[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['heart_zone_swing_percent'] = [df_summ.heart_swing[x]/df_summ.heart[x] if df_summ.heart[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['shadow_zone_swing_percent'] = [df_summ.shadow_swing[x]/df_summ.shadow[x] if df_summ.shadow[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['chase_zone_swing_percent'] = [df_summ.chase_swing[x]/df_summ.chase[x] if df_summ.chase[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['waste_zone_swing_percent'] = [df_summ.waste_swing[x]/df_summ.waste[x] if df_summ.waste[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['heart_zone_whiff_percent'] = [df_summ.heart_whiff[x]/df_summ.heart_swing[x] if df_summ.heart_swing[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['shadow_zone_whiff_percent'] = [df_summ.shadow_whiff[x]/df_summ.shadow_swing[x] if df_summ.shadow_swing[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['chase_zone_whiff_percent'] = [df_summ.chase_whiff[x]/df_summ.chase_swing[x] if df_summ.chase_swing[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['waste_zone_whiff_percent'] = [df_summ.waste_whiff[x]/df_summ.waste_swing[x] if df_summ.waste_swing[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['xwoba_percent'] = [df_summ.xwoba[x]/df_summ.woba_codes[x] if df_summ.woba_codes[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['xwoba_percent_contact'] = [df_summ.xwoba_contact[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
df_summ['pitch_percent'] = [df_summ.pitches[x]/df_summ.pitch_count[x] if df_summ.pitch_count[x] != 0 else np.nan for x in range(len(df_summ))]
table_left = df_summ[df_summ['batter_hand']=='L'][['pitch_percent',
'pitches',
'heart_zone_percent',
'shadow_zone_percent',
'chase_zone_percent',
'waste_zone_percent',
'csw_percent',
'whiff_rate',
'chase_percent',
'bip',
'xwoba_percent_contact'
]]
### GET COLOURS##
import matplotlib.colors
import matplotlib.colors as mcolors
def get_color(value,normalize):
color = cmap_sum(normalize(value))
return mcolors.to_hex(color)
normalize = mcolors.Normalize(vmin=table_left['pitch_percent']*0.5,
vmax=table_left['pitch_percent']*1.5) # Define the range of values
df_colour_left = pd.DataFrame(data=[[get_color(x,normalize) for x in pivot_table_l.loc[0]],
[get_color(x,normalize) for x in pivot_table_l.loc[1]],
[get_color(x,normalize) for x in pivot_table_l.loc[2]]],)
table_left['pitch_percent'] = table_left['pitch_percent'].map('{:.1%}'.format)
table_left['pitches'] = table_left['pitches'].astype(int).astype(str)
# table_left['pa'] = table_left['pa'].astype(int).astype(str)
# table_left['k_percent'] = table_left['k_percent'].map('{:.1%}'.format)
# table_left['bb_percent'] = table_left['bb_percent'].map('{:.1%}'.format)
table_left['heart_zone_percent'] = table_left['heart_zone_percent'].map('{:.1%}'.format)
table_left['shadow_zone_percent'] = table_left['shadow_zone_percent'].map('{:.1%}'.format)
table_left['chase_zone_percent'] = table_left['chase_zone_percent'].map('{:.1%}'.format)
table_left['waste_zone_percent'] = table_left['waste_zone_percent'].map('{:.1%}'.format)
table_left['csw_percent'] = table_left['csw_percent'].map('{:.1%}'.format)
table_left['whiff_rate'] = table_left['whiff_rate'].map('{:.1%}'.format)
table_left['chase_percent'] = table_left['chase_percent'].map('{:.1%}'.format)
table_left['bip'] = table_left['bip'].astype(int).astype(str)
table_left['xwoba_percent_contact'] = table_left['xwoba_percent_contact'].map('{:.3f}'.format)
table_left.columns = ['Usage%','Pitches','Heart%','Shadow%','Chase%','Waste%','CSW%','Whiff%','O-Swing%','BBE','xwOBACON']
table_left = table_left.replace({'nan%':'—'})
table_left = table_left.replace({'nan':'—'})
table_left = table_left.T
table_right = df_summ[df_summ['batter_hand']=='R'][['pitch_percent',
'pitches',
'heart_zone_percent',
'shadow_zone_percent',
'chase_zone_percent',
'waste_zone_percent',
'csw_percent',
'whiff_rate',
'chase_percent',
'bip',
'xwoba_percent_contact'
]]
normalize = mcolors.Normalize(vmin=table_right['pitch_percent']*0.5,
vmax=table_right['pitch_percent']*1.5) # Define the range of values
df_colour_right = pd.DataFrame(data=[[get_color(x,normalize) for x in pivot_table_r.loc[0]],
[get_color(x,normalize) for x in pivot_table_r.loc[1]],
[get_color(x,normalize) for x in pivot_table_r.loc[2]]],)
table_right['pitch_percent'] = table_right['pitch_percent'].map('{:.1%}'.format)
table_right['pitches'] = table_right['pitches'].astype(int).astype(str)
# table_right['pa'] = table_right['pa'].astype(int).astype(str)
# table_right['k_percent'] = table_right['k_percent'].map('{:.1%}'.format)
# table_right['bb_percent'] = table_right['bb_percent'].map('{:.1%}'.format)
table_right['heart_zone_percent'] = table_right['heart_zone_percent'].map('{:.1%}'.format)
table_right['shadow_zone_percent'] = table_right['shadow_zone_percent'].map('{:.1%}'.format)
table_right['chase_zone_percent'] = table_right['chase_zone_percent'].map('{:.1%}'.format)
table_right['waste_zone_percent'] = table_right['waste_zone_percent'].map('{:.1%}'.format)
table_right['csw_percent'] = table_right['csw_percent'].map('{:.1%}'.format)
table_right['whiff_rate'] = table_right['whiff_rate'].map('{:.1%}'.format)
table_right['chase_percent'] = table_right['chase_percent'].map('{:.1%}'.format)
table_right['bip'] = table_right['bip'].astype(int).astype(str)
table_right['xwoba_percent_contact'] = table_right['xwoba_percent_contact'].map('{:.3f}'.format)
table_right.columns = ['Usage%','Pitches','Heart%','Shadow%','Chase%','Waste%','CSW%','Whiff%','O-Swing%','BBE','xwOBACON']
table_right = table_right.replace({'nan%':'—'})
table_right = table_right.replace({'nan':'—'})
table_right = table_right.T
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.gridspec as gridspec
from matplotlib.gridspec import GridSpec
# Assuming you have a list of pitch locations called 'pitch_locations'
# where each location is a tuple of (x, y) coordinates
fig = plt.figure(figsize=(16, 9))
fig.set_facecolor('white')
sns.set_theme(style="whitegrid", palette=colour_palette)
gs = GridSpec(3, 5, height_ratios=[2,9,1],width_ratios=[2,9,0.5,9,2])
gs.update(hspace=0.2, wspace=0.2)
# Add subplots to the grid
axheader = fig.add_subplot(gs[0, :])
ax_left = fig.add_subplot(gs[1, 1])
ax_right = fig.add_subplot(gs[1, 3])
axfooter = fig.add_subplot(gs[-1, :])
if df_plot[df_plot['batter_hand']=='L'].shape[0] > 3:
sns.kdeplot(data=df_plot[df_plot['batter_hand']=='L'],
x='px',
y='pz',
cmap=cmap_sum,
shade=True,
ax=ax_left,
thresh=0.3,
bw_adjust=0.5)
else:
sns.scatterplot(data=df_plot[df_plot['batter_hand']=='L'],
x='px',
y='pz',
cmap=cmap_sum,
ax=ax_left,
s=125)
if df_plot[df_plot['batter_hand']=='R'].shape[0] > 3:
sns.kdeplot(data=df_plot[df_plot['batter_hand']=='R'],
x='px',
y='pz',
cmap=cmap_sum,
shade=True,
ax=ax_right,
thresh=0.3,
bw_adjust=0.5)
else:
sns.scatterplot(data=df_plot[df_plot['batter_hand']=='R'],
x='px',
y='pz',
cmap=cmap_sum,
ax=ax_right,
s=125)
draw_line(ax_left,alpha_spot=1,catcher_p = False)
draw_line(ax_right,alpha_spot=1,catcher_p = False)
ax_left.axis('off')
ax_right.axis('off')
ax_left.axis('square')
ax_right.axis('square')
ax_left.set_xlim(-2.75,2.75)
ax_right.set_xlim(-2.75,2.75)
ax_left.set_ylim(-0.5,5)
ax_right.set_ylim(-0.5,5)
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
# Load the image
img = mpimg.imread('left.png')
imagebox = OffsetImage(img, zoom=0.7) # adjust zoom as needed
ab = AnnotationBbox(imagebox, (1.25, -0.5), box_alignment=(0, 0), frameon=False)
ax_left.add_artist(ab)
# Load the image
img = mpimg.imread('right.png')
imagebox = OffsetImage(img, zoom=0.7) # adjust zoom as needed
# Create an AnnotationBbox
ab = AnnotationBbox(imagebox, (-1.25, -0.5), box_alignment=(1, 0), frameon=False)
ax_right.add_artist(ab)
from matplotlib.transforms import Bbox
# Create a transformation that converts from data coordinates to axes coordinates
trans = ax_left.transData + ax_left.transAxes.inverted()
# Calculate the bbox in axes coordinates
bbox_data = Bbox.from_bounds(-4.2, -0.5, 2.5, 5) # replace width and height with the desired values
bbox_axes = trans.transform_bbox(bbox_data)
table_left_plot = ax_left.table(cellText=table_left.reset_index().values,
loc='right',
cellLoc='center',
colWidths=[0.52,0.3],
bbox=bbox_axes.bounds,zorder=100)
min_font_size = 14
# Set table properties
table_left_plot.auto_set_font_size(False)
#table.set_fontsize(min(min_font_size,max(min_font_size/((len(label_labels)/4)),10)))
table_left_plot.set_fontsize(min_font_size)
#table_left_plot.scale(1,3)
# Calculate the bbox in axes coordinates
bbox_data = Bbox.from_bounds(-0.75, 5, 2.5, 1) # replace width and height with the desired values
bbox_axes = trans.transform_bbox(bbox_data)
def format_as_percentage(val):
return f'{val * 100:.0f}%'
table_left_plot_pivot = ax_left.table(cellText=[[format_as_percentage(val) for val in row] for row in pivot_table_l.values],
colLabels =pivot_table_l.columns,
rowLabels =[' 0 ',' 1 ',' 2 '],
loc='center',
cellLoc='center',
colWidths=[0.3,0.3,0.30,0.3],
bbox=bbox_axes.bounds,zorder=100,cellColours =df_colour_left.values)
min_font_size = 11
# Set table properties
table_left_plot_pivot.auto_set_font_size(False)
#table.set_fontsize(min(min_font_size,max(min_font_size/((len(label_labels)/4)),10)))
table_left_plot_pivot.set_fontsize(min_font_size)
# Create a transformation that converts from data coordinates to axes coordinates
trans = ax_right.transData + ax_right.transAxes.inverted()
# Calculate the bbox in axes coordinates
bbox_data = Bbox.from_bounds(1.7, -0.5, 2.5, 5) # replace width and height with the desired values
bbox_axes = trans.transform_bbox(bbox_data)
table_right_plot = ax_right.table(cellText=table_right.reset_index().values,
loc='right',
cellLoc='center',
colWidths=[0.52,0.3],
bbox=bbox_axes.bounds,zorder=100)
min_font_size = 14
# Set table properties
table_right_plot.auto_set_font_size(False)
#table.set_fontsize(min(min_font_size,max(min_font_size/((len(label_labels)/4)),10)))
table_right_plot.set_fontsize(min_font_size)
table_right_plot.scale(0.5,3)
# Calculate the bbox in axes coordinates
# Create a transformation that converts from data coordinates to axes coordinates
trans = ax_right.transData + ax_right.transAxes.inverted()
bbox_data = Bbox.from_bounds(-0.75, 5, 2.5, 1) # replace width and height with the desired values
bbox_axes = trans.transform_bbox(bbox_data)
table_right_plot_pivot = ax_right.table(cellText=[[format_as_percentage(val) for val in row] for row in pivot_table_r.values],
colLabels =pivot_table_r.columns,
rowLabels =[' 0 ',' 1 ',' 2 '],
loc='center',
cellLoc='center',
colWidths=[0.3,0.3,0.30,0.3],
bbox=bbox_axes.bounds,zorder=100,cellColours =df_colour_right.values)
min_font_size = 11
# Set table properties
table_right_plot_pivot.auto_set_font_size(False)
#table.set_fontsize(min(min_font_size,max(min_font_size/((len(label_labels)/4)),10)))
table_right_plot_pivot.set_fontsize(min_font_size)
from matplotlib.cm import ScalarMappable
from matplotlib.colors import Normalize
# Create a ScalarMappable with the same colormap and normalization
sm = ScalarMappable(cmap=cmap_sum, norm=Normalize(vmin=0, vmax=1))
#from mpl_toolkits.axes_grid1.inset_locator import inset_axes
#######################
# Create a new Subplot object for the colorbar
# Create a new Axes object for the colorbar at the bottom middle of the figure
cbar = fig.colorbar(sm, ax=axfooter, orientation='horizontal',aspect=100)
# cbar.ax.set_aspect(20)
# cbar = plt.colorbar(batter_plot, cax=ax12, orientation='vertical',shrink=1, cmap=cmap_hue)
# cbar = plt.colorbar(batter_plot, cax=ax12, orientation='vertical',shrink=1)
cbar.set_ticks([])
# # Create an inset axes for the colorbar
# cax = inset_axes(axfooter,
# width="50%", # width = 50% of parent_bbox width
# height="100%", # height : 5%
# loc='center')
# # Add the colorbar to the inset axes
# cbar = fig.colorbar(sm, cax=cax, orientation='horizontal')
# # Set the labels on the low and high ends of the colorbar
# # Set the xticks to only include the low and high ends of the colorbar
cbar.set_ticks([sm.norm.vmin, sm.norm.vmax])
# # Set the labels on the low and high ends of the colorbar
cbar.ax.set_xticklabels(['Least', 'Most'])
# # Place the xticks on top of the colorbar
cbar.ax.tick_params(labeltop=True, labelbottom=False, labelsize=14)
# # Get the labels
labels = cbar.ax.get_xticklabels()
# # Set the alignment of the labels
labels[0].set_horizontalalignment('left')
labels[-1].set_horizontalalignment('right')
# # Get the labels
labels = cbar.ax.get_xticklabels()
# # Set the font size of the labels
# for label in labels:
# label.set_fontsize(16)
# # Set the labels
cbar.ax.set_xticklabels(labels)
# # Remove the tick lines on the colorbar
cbar.ax.tick_params(length=0)
axfooter.text(x=0.02,y=0.5,s='By: Thomas Nestico\n @TJStats',fontname='Calibri',ha='left',fontsize=18,va='top')
axfooter.text(x=1-0.02,y=0.5,s='Data: MLB',ha='right',fontname='Calibri',fontsize=18,va='top')
axfooter.axis('off')
axheader.text(x=0.5,y=1.2,s=f"{df_plot['pitcher_name'].values[0]} - {df_plot['pitcher_hand'].values[0]}HP\n{season} {df_plot['pitch_description'].values[0]} Pitch Frequency",ha='center',fontsize=24,va='top')
axheader.axis('off')
import urllib
import urllib.request
import urllib.error
from urllib.error import HTTPError
try:
url = f'https://img.mlbstatic.com/mlb-photos/image/upload/d_people:generic:headshot:67:current.png/w_213,q_auto:best/v1/people/{df_plot["pitcher_id"].values[0]}/headshot/67/current.png'
test_mage = plt.imread(url)
except urllib.error.HTTPError as err:
url = f'https://img.mlbstatic.com/mlb-photos/image/upload/d_people:generic:headshot:67:current.png/w_213,q_auto:best/v1/people/1/headshot/67/current.png'
imagebox = OffsetImage(test_mage, zoom = 0.4)
ab = AnnotationBbox(imagebox, (0.075, 0.4), frameon = False)
axheader.add_artist(ab)
player_bio = requests.get(url=f"https://statsapi.mlb.com/api/v1/people?personIds={df_plot['pitcher_id'].values[0]}&hydrate=currentTeam").json()
team_logos = pd.read_csv('team_logos.csv')
mlb_stats = MLB_Scrape()
teams_df = mlb_stats.get_teams()
team_logo_dict = teams_df.set_index(['team_id'])['parent_org_id'].to_dict()
if 'currentTeam' in player_bio['people'][0]:
try:
url = team_logos[team_logos['id'] == team_logo_dict[player_bio['people'][0]['currentTeam']['id']]]['imageLink'].values[0]
im = plt.imread(url)
# response = requests.get(url)
# im = Image.open(BytesIO(response.content))
# im = plt.imread(team_logos[team_logos['id'] == player_bio['people'][0]['currentTeam']['parentOrgId']]['imageLink'].values[0])
# ax = fig.add_axes([0,0,1,0.85], anchor='C', zorder=1)
imagebox = OffsetImage(im, zoom = 0.3)
ab = AnnotationBbox(imagebox, (0.925, 0.40), frameon = False)
axheader.add_artist(ab)
except IndexError:
print()
ax_left.text(s='Against LHH',x=-2.95,y=4.65,fontsize=18,fontweight='bold',ha='center')
ax_right.text(s='Against RHH',x=2.95,y=4.65,fontsize=18,fontweight='bold',ha='center')
# Center the labels
ax_left.text(x=-1.72, y=5.08, s='Strikes', rotation=90,fontweight='bold')
ax_right.text(x=-1.72, y=5.08, s='Strikes', rotation=90,fontweight='bold')
ax_left.text(x=0, y=6.1, s='Balls',ha='center',fontweight='bold')
ax_right.text(x=0, y=6.1, s='Balls',ha='center',fontweight='bold')
#cbar.ax.set_xticklabels(cbar.ax.get_xticklabels(), ha='center')
fig.subplots_adjust(left=0.01, right=0.99, top=0.95, bottom=0.05)
return
app = App(app_ui, server) |