Spaces:
Sleeping
Sleeping
File size: 8,335 Bytes
68d34d0 ac510cd 68d34d0 ac510cd 68d34d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
from segment_anything import SamPredictor, sam_model_registry,SamAutomaticMaskGenerator
from PIL import Image
import torch
from detectron2.data.detection_utils import read_image,pil_image_to_numpy
from detectron2.utils.visualizer import Visualizer
import numpy as np
from skimage import measure
import threading
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def seg_with_promp(imput_image,point_coords=None,box=None):
if isinstance(imput_image, Image.Image):
imput_image = pil_image_to_numpy(imput_image)
point_labels = None
if point_coords is not None:
point_labels = np.ones(point_coords.shape[0])
sam = sam_model_registry["vit_b"](checkpoint="./sam_vit_b_01ec64.pth").to(device)
predictor = SamPredictor(sam)
predictor.set_image(imput_image)
masks = None
if box is not None:
masks, _, _ = predictor.predict(box=box)
elif point_coords is not None and point_labels is not None:
masks, _, _ = predictor.predict(point_coords=point_coords,point_labels=point_labels)
print("seg_with_promp:",masks.shape)
pil_images = draw_bitmask(imput_image,masks)
return masks,pil_images
def seg_all(imput_image):
if isinstance(imput_image, Image.Image):
imput_image = pil_image_to_numpy(imput_image)
sam = sam_model_registry["vit_b"](checkpoint="./sam_vit_b_01ec64.pth")
mask_generator = SamAutomaticMaskGenerator(sam)
masks = mask_generator.generate(imput_image)
pil_images = draw_bitmask(imput_image,masks)
# pil_images = draw_polygon(imput_image,masks)
# pil_images = draw_bitmask_split(imput_image,masks)
return masks,pil_images
# 为每个二值掩码生成一张图片
def draw_bitmask_split(np_image,masks):
for i,obj in enumerate(masks):
print("segmentation:",obj["segmentation"].shape)
view = Visualizer(np_image)
view.draw_binary_mask(obj["segmentation"])
vis_image = view.get_output()
pil_images = visimage_to_pil([vis_image],idx=i)
return pil_images
# 绘制二值掩码
def draw_bitmask(np_image,masks):
view = Visualizer(np_image)
for obj in masks:
if "segmentation" in obj:
print("segmentation:",obj["segmentation"].shape)
view.draw_binary_mask(obj["segmentation"])
else:
view.draw_binary_mask(obj)
vis_image = view.get_output()
pil_images = visimage_to_pil([vis_image])
return pil_images
# 绘制多边形掩码
def draw_polygon(np_image,masks):
view = Visualizer(np_image)
for obj in masks:
polygon = bitmask_to_polygon(obj["segmentation"])
view.draw_polygon(polygon,"k")
vis_image = view.get_output()
pil_images = visimage_to_pil([vis_image])
return pil_images
# 二值掩码转换为多边形掩码
def bitmask_to_polygon(mask):
col_mask = np.asfortranarray(mask)
contours = measure.find_contours(col_mask,0.5)
print("contours------",contours.shape)
for i,contour in enumerate(contours):
contour = np.flip(contour, axis=1)
print(f"polygon_{i}",contour.shape)
# polygon = contour.ravel().tolist()
# print(f"polygon_{i}",polygon)
return contour
# VIS图片转换为pil
def visimage_to_pil(visimages,need_save=False,idx=0):
pil_images = []
for i,visimage in enumerate(visimages):
visualized_image = visimage.get_image()[:, :, ::-1]
pil_image = Image.fromarray(visualized_image)
if need_save:
pil_image.save(f"{idx}_{i}.jpg")
pil_images.append(pil_image)
return pil_images
def image_to_mask(image, threshold=128):
# 将图像转换为灰度图像
if image.mode != 'L':
image = image.convert('L')
# 将像素值映射到二进制值
mask_array = np.array(image) > threshold
# 创建一个与原始图像大小相同的数组,用映射后的二进制值填充
mask_image = Image.fromarray(np.uint8(mask_array) * 255)
return mask_image
class SamAnything:
_instance = None
_lock = threading.Lock()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def __new__(cls, *args, **kwargs):
if cls._instance is None:
with cls._lock:
if cls._instance is None:
cls._instance = super(SamAnything, cls).__new__(cls)
cls._instance._initialize(*args, **kwargs)
return cls._instance
def _initialize(self, checkpoint_path="./sam_vit_b_01ec64.pth"):
self.sam = sam_model_registry["vit_b"](checkpoint=checkpoint_path).to(self.device)
self.predictor = SamPredictor(self.sam)
self.mask_generator = SamAutomaticMaskGenerator(self.sam)
def seg_with_promp(self, imput_image, point_coords=None, box=None):
if isinstance(imput_image, Image.Image):
imput_image = pil_image_to_numpy(imput_image)
point_labels = None
if point_coords is not None:
point_labels = np.ones(point_coords.shape[0])
self.predictor.set_image(imput_image)
masks = None
if box is not None:
masks, _, _ = self.predictor.predict(box=box)
elif point_coords is not None and point_labels is not None:
masks, _, _ = self.predictor.predict(point_coords=point_coords, point_labels=point_labels)
print("seg_with_promp:", masks.shape)
pil_images = self.draw_bitmask(imput_image, masks)
return masks, pil_images
def seg_all(self, imput_image):
if isinstance(imput_image, Image.Image):
imput_image = pil_image_to_numpy(imput_image)
masks = self.mask_generator.generate(imput_image)
pil_images = self.draw_bitmask(imput_image, masks)
return masks, pil_images
@staticmethod
def draw_bitmask_split(np_image, masks):
pil_images = []
for i, obj in enumerate(masks):
print("segmentation:", obj["segmentation"].shape)
view = Visualizer(np_image)
view.draw_binary_mask(obj["segmentation"])
vis_image = view.get_output()
pil_images.extend(SamAnything.visimage_to_pil([vis_image], idx=i))
return pil_images
@staticmethod
def draw_bitmask(np_image, masks):
view = Visualizer(np_image)
for obj in masks:
if "segmentation" in obj:
print("segmentation:", obj["segmentation"].shape)
view.draw_binary_mask(obj["segmentation"])
else:
view.draw_binary_mask(obj)
vis_image = view.get_output()
pil_images = SamAnything.visimage_to_pil([vis_image])
return pil_images
@staticmethod
def draw_polygon(np_image, masks):
view = Visualizer(np_image)
for obj in masks:
polygon = SamAnything.bitmask_to_polygon(obj["segmentation"])
view.draw_polygon(polygon, "k")
vis_image = view.get_output()
pil_images = SamAnything.visimage_to_pil([vis_image])
return pil_images
@staticmethod
def bitmask_to_polygon(mask):
col_mask = np.asfortranarray(mask)
contours = measure.find_contours(col_mask, 0.5)
print("contours------", len(contours))
for i, contour in enumerate(contours):
contour = np.flip(contour, axis=1)
print(f"polygon_{i}", contour.shape)
return contours
@staticmethod
def visimage_to_pil(visimages, need_save=True, idx=0):
pil_images = []
for i, visimage in enumerate(visimages):
visualized_image = visimage.get_image()
pil_image = Image.fromarray(visualized_image)
if need_save:
pil_image.save(f"{idx}_{i}.jpg")
pil_images.append(pil_image)
return pil_images
@staticmethod
def image_to_mask(image, threshold=128):
if image.mode != 'L':
image = image.convert('L')
mask_array = np.array(image) > threshold
mask_image = Image.fromarray(np.uint8(mask_array) * 255)
return mask_image
# if __name__ == "__main__":
# np_image = read_image("./test/face1.jpeg")
# print("np_image:",np_image.shape)
# SamAnything.initialize_sam("./sam_vit_b_01ec64.pth")
# SamAnything.seg_all(np_image) |