Spaces:
Sleeping
Sleeping
File size: 13,209 Bytes
68d34d0 ccba85f 68d34d0 ccba85f 68d34d0 ccba85f 68d34d0 ccba85f 68d34d0 ccba85f 68d34d0 ccba85f 68d34d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# import some common libraries
import numpy as np
# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.utils.visualizer import ColorMode
import detectron2.data.transforms as T
from predictor import InferenceBase
import torch
import torchvision.transforms as transforms
from PIL import Image
from detectron2.data.detection_utils import pil_image_handler
# 定义模型类别的常量
class ModelCategory:
IMAGE_FEATURE_EXTRACT = "image_feature_extract"
IMAGE_CLASSIFICATION = "image_classification"
OBJECT_DETECTION = "object_detection"
ONE_STEP_OBJECT_DETECTION = "onestep_object_detection"
SEMANTIC_SEGMENTATION = "semantic_segmentation"
INSTANCE_SEGMENTATION = "instance_segmentation"
PANOPTIC_SEGMENTATION = "panoptic_segmentation"
KEYPOINTS = "keypoints"
REGRESSION = "regression"
TEXT_CLASSIFICATION = "text_classification"
LANGUAGE_MODELLING = "language_modelling"
TRANSLATION = "translation"
QA_SYSTEM = "qa_system"
RECOMMENDATION_SYSTEM = "recommendation_system"
GENERATIVE_MODELLING = "generative_modelling"
CONTROL = "control"
ROBOTICS = "robotics"
YOLO = "yolo"
OTHERS = "others"
class ModelConfig:
cfg: None
def __init__(self,model_type, model_path: str=None,cfg_path: str= None,thresh_hold: float = 0.5):
self.cfg = get_cfg()
if cfg_path is not None:
self.cfg.merge_from_file(cfg_path)
if model_path is not None:
self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(model_path)
self.thresh_hold = thresh_hold
if model_type == ModelCategory.IMAGE_FEATURE_EXTRACT:
self.cfg.TASK_TYPE = "feature"
self.cfg.MODEL.WEIGHTS = None
elif model_type == ModelCategory.IMAGE_CLASSIFICATION:
self.cfg.TASK_TYPE = "classfication"
self.cfg.MODEL.WEIGHTS = None
elif model_type == ModelCategory.SEMANTIC_SEGMENTATION:
self.cfg.TASK_TYPE = "semantic"
self.cfg.MODEL.WEIGHTS = None
elif model_type == ModelCategory.YOLO:
self.cfg.TASK_TYPE = "yolo"
self.cfg.MODEL.WEIGHTS = None
def get_cfg(self,):
return self.cfg
class ModelFactory:
_instances = {}
def __init__(self):
self.need_save_images = False
@classmethod
def get_instance(cls, category, cfg):
if category not in cls._instances:
cls._instances[category] = InferenceBase(cfg)
return cls._instances[category]
def serialize(self,output):
serialized = None
# print(output)
if "instances" in output:
serialized = {
'image_height': output["instances"].image_size[0],
'image_width': output["instances"].image_size[1],
'pred_boxes': output["instances"].pred_boxes.tolist() if isinstance(output["instances"].pred_boxes, torch.Tensor) else output["instances"].pred_boxes.tensor.tolist(),
'scores': output["instances"].scores.tolist() if output["instances"].has("scores") else None,
'pred_classes': output["instances"].pred_classes.tolist() if output["instances"].has("pred_classes") else None
}
if hasattr(output["instances"],"pred_masks"):
# serialized["pred_masks"] = output["instances"].pred_masks.tolist()
print("instances.pred_masks",output["instances"].pred_masks.shape)
if hasattr(output["instances"],"pred_keypoints"):
serialized["pred_keypoints"] = output["instances"].pred_keypoints.tolist()
if "sem_seg" in output:
# serialized["sem_seg"] = output["sem_seg"].tolist()
print("sem_seg:",output["sem_seg"].shape)
if "panoptic_seg" in output:
print("panoptic_seg:",output["panoptic_seg"][0].shape)
# print("panoptic_seg:",output["panoptic_seg"])
serialized["panoptic_seg"] = output["panoptic_seg"][1]
if "sem_segs" in output:
print("sem_segs:",output["sem_segs"].shape)
if "classfication" in output:
serialized = []
for item in output["classfication"]:
print("classfication:",item["feature"].shape)
row = {
# "feature": item["feature"].tolist(),
"score": item["score"].tolist(),
"pred_class": item["pred_class"].tolist(),
}
serialized.append(row)
if "features" in output:
print("features:",output["features"].shape)
serialized = {
"features":output["features"].tolist(),
}
if serialized is None:
return output
return serialized
def predict(self,pil_image,task_type="panoptic"):
result = None
vis_output = None
if task_type == "panoptic":
result,vis_output = self.panoptic_segment(input_image=pil_image)
elif task_type == "detect":
result,vis_output = self.detect(input_image=pil_image)
elif task_type == "classification":
result = self.classify(input_image=pil_image)
elif task_type == "instance":
result,vis_output = self.instance_segment(input_image=pil_image)
elif task_type == "semantic":
result,vis_output = self.semantic_segment(input_image=pil_image)
elif task_type == "feature":
result = self.extract(input_image=pil_image)
elif task_type == "keypoint":
result,vis_output = self.keypoint(input_image=pil_image)
elif task_type == "onestep_detect":
result,vis_output = self.onstep_detect(input_image=pil_image)
elif task_type == "yolo":
result,vis_output = self.yolo(input_image=pil_image)
return self.serialize(result),vis_output
def extract(self, input_image=None,image_path: str="./test.png"):
"""
Perform classification on an image using Detectron2.
"""
cfg = ModelConfig(ModelCategory.IMAGE_FEATURE_EXTRACT,
model_path=None,
cfg_path=None).get_cfg()
p = self.get_instance(ModelCategory.IMAGE_FEATURE_EXTRACT,cfg)
if input_image is None and image_path is not None:
input_image = Image.open(image_path).convert('RGB')
input_image = pil_image_handler(input_image)
outputs,_ = p.run_on_image(input_image)
return outputs
def classify(self, input_image=None,image_path: str="./cat.jpg"):
"""
Perform classification on an image using Detectron2.
"""
cfg = ModelConfig(ModelCategory.IMAGE_CLASSIFICATION,
model_path=None,
cfg_path=None).get_cfg()
p = self.get_instance(ModelCategory.IMAGE_CLASSIFICATION,cfg)
if input_image is None and image_path is not None:
input_image = Image.open(image_path).convert('RGB')
input_image = pil_image_handler(input_image)
outputs,_ = p.run_on_image(input_image)
return outputs
def onstep_detect(self, input_image=None,image_path: str= "./test.png", confidence_threshold: float = 0.5):
"""
Perform on step object detection on an image using Detectron2.
"""
cfg = ModelConfig(ModelCategory.ONE_STEP_OBJECT_DETECTION,
model_path="COCO-Detection/retinanet_R_101_FPN_3x.yaml",
cfg_path="./configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml").get_cfg()
p = self.get_instance(ModelCategory.ONE_STEP_OBJECT_DETECTION,cfg)
if input_image is None and image_path is not None:
input_image = p.read_image(image_path)
else:
input_image = pil_image_handler(input_image)
outputs,vis_output = p.run_on_image(input_image)
return outputs,vis_output
def detect(self,input_image=None, image_path: str = "./test.png", confidence_threshold: float = 0.5):
"""
Perform object detection on an image using Detectron2.
"""
cfg = ModelConfig(ModelCategory.OBJECT_DETECTION,
model_path="COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml",
cfg_path="./configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml").get_cfg()
p = self.get_instance(ModelCategory.IMAGE_FEATURE_EXTRACT, cfg)
if input_image is None and image_path is not None:
input_image = p.read_image(image_path)
else:
input_image = pil_image_handler(input_image)
outputs,vis_output = p.run_on_image(input_image)
return outputs,vis_output
def instance_segment(self,input_image=None, image_path: str="./test.png"):
"""
Perform instance segmentation on an image using Detectron2.
"""
cfg = ModelConfig(ModelCategory.INSTANCE_SEGMENTATION,
model_path="COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml",
cfg_path="./configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml").get_cfg()
p = self.get_instance(ModelCategory.INSTANCE_SEGMENTATION,cfg)
if input_image is None and image_path is not None:
input_image = p.read_image(image_path)
else:
input_image = pil_image_handler(input_image)
outputs,vis_output = p.run_on_image(input_image)
return outputs,vis_output
def semantic_segment(self,input_image=None, image_path: str="./test.png"):
"""
Perform instance segmentation on an image using Detectron2.
"""
cfg = ModelConfig(ModelCategory.SEMANTIC_SEGMENTATION,
model_path=None,
cfg_path="./configs/PascalVOC-Detection/faster_rcnn_R_50_FPN.yaml").get_cfg()
p = self.get_instance(ModelCategory.SEMANTIC_SEGMENTATION,cfg)
if input_image is None and image_path is not None:
input_image = Image.open(image_path).convert('RGB')
input_image = pil_image_handler(input_image)
outputs,vis_output = p.run_on_image(input_image)
return outputs,vis_output
def panoptic_segment(self,input_image=None, image_path: str="./test.png"):
"""
Perform panoptic segmentation on an image using Detectron2.
"""
cfg = ModelConfig(ModelCategory.INSTANCE_SEGMENTATION,
model_path="COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml",
cfg_path="./configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml").get_cfg()
p = self.get_instance(ModelCategory.INSTANCE_SEGMENTATION,cfg)
if input_image is None and image_path is not None:
input_image = p.read_image(image_path)
else:
input_image = pil_image_handler(input_image)
outputs,vis_output = p.run_on_image(input_image)
# outputs['sem_seg'] = outputs['sem_seg'].numpy().tolist()
return outputs,vis_output
def keypoint(self, input_image=None,image_path: str="./test.png"):
"""
Perform keypoint on an image using Detectron2.
"""
cfg = ModelConfig(ModelCategory.KEYPOINTS,
model_path="COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml",
cfg_path="./configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml").get_cfg()
p = self.get_instance(ModelCategory.KEYPOINTS,cfg)
if input_image is None and image_path is not None:
input_image = p.read_image(image_path)
else:
input_image = pil_image_handler(input_image)
outputs,vis_output = p.run_on_image(input_image)
return outputs,vis_output
def yolo(self, input_image=None,image_path: str="./test/test.png"):
cfg = ModelConfig(ModelCategory.YOLO,
model_path=None,
cfg_path=None).get_cfg()
p = self.get_instance(ModelCategory.YOLO,cfg)
if input_image is None and image_path is not None:
input_image = Image.open(image_path).convert('RGB')
input_image = pil_image_handler(input_image)
outputs,vis_output = p.run_on_image(input_image)
return outputs,vis_output
# if __name__ == "__main__":
# f = ModelFactory()
# # f.prepare_meta()
# out = f.yolo()
# print(out)
|