File size: 5,649 Bytes
68d34d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import sys
sys.path.append("..")
from deepface import DeepFace
from deepface.modules import modeling
from deepface.detectors import DetectorWrapper
from detectron2.data.detection_utils import pil_image_to_numpy,convert_PIL_to_numpy
from detectron2.utils.visualizer import ColorMode, Visualizer
import numpy as np
import time

from PIL import Image

# print(modeling.model_obj)
# print(DetectorWrapper.face_detector_obj)

class FaceAlgo:
    
    need_save_image = False

    backends = [
    'opencv', 
    'ssd', 
    'dlib', 
    'mtcnn', 
    'fastmtcnn',
    'retinaface', 
    'mediapipe',
    'yolov8',
    'yunet',
    'centerface',
    ]

    recognition_models = [
        "VGG-Face", 
        "Facenet", 
        "Facenet512", 
        "OpenFace", 
        "DeepFace", 
        "DeepID", 
        "ArcFace", 
        "Dlib", 
        "SFace",
        "GhostFaceNet",
    ]

    distance_metric = [
        'cosine',
        'euclidean',
        'euclidean_l2',
    ]

    def __init__(self,need_save_image=False):
        self.need_save_image = need_save_image

    def np_to_pil(self,np_img):
        # 转换 BGR 到 RGB
        # rgb_image = np_img[:, :, ::-1]
        np_img = (np_img * 255).astype(np.uint8)
        # print(rgb_image.shape)
        #convert numpy array to PIL Image
        return Image.fromarray(np_img)

    def draw_face_box(self,image,face_areas):
        if not isinstance(image,np.ndarray):
            image = convert_PIL_to_numpy(image,format=None)

        image = image[:, :, ::-1]
        visualizer = Visualizer(image,instance_mode=ColorMode)
        for area in face_areas:
            x = area['x']
            y = area['y']
            w = area['w']
            h = area['h']
            visualizer.draw_box((x,y,x+w,y+h),edge_color="r")
        
        visualized_image = visualizer.get_output().get_image()
        # [:, :, ::-1]
        return Image.fromarray(visualized_image)
        
        

    def predict(self,pil_image,pil_image1=None,algo_type="detect"):
        image = pil_image_to_numpy(pil_image)
        if pil_image1 is not None:
            image1 = pil_image_to_numpy(pil_image1)

        if algo_type == "detect":
            return self.detect(image)
        elif algo_type =="recognize":
            return self.recognition(image)
        elif algo_type =="compare":
            return self.verify(image,image1)
        elif algo_type =="feature":
            return self.embeddings(image)
        elif algo_type =="attr":
            return self.analysis(image)

    def verify(self,a,b):
        #face verification
        obj = DeepFace.verify(
            img1_path = a, 
            img2_path = b, 
            detector_backend = self.backends[0],
            distance_metric = self.distance_metric[0],
        )

        face_area1 = [obj['facial_areas']['img1']]
        face1 = self.draw_face_box(a,face_area1)
        face_area2 = [obj['facial_areas']['img2']]
        face2 = self.draw_face_box(b,face_area2)
        current_timestamp = time.time()
        if self.need_save_image:
                face1.save(f"{current_timestamp}_0.png")
                face2.save(f"{current_timestamp}_1.png")
        return obj,[face1,face2]

    def recognition(self,a):
        #face recognition
        dfs = DeepFace.find(
            img_path = a, 
            db_path = "./test/", 
            detector_backend = self.backends[1],
            distance_metric = self.distance_metric[0],
        )

        json_list = [df.to_json(orient='records') for df in dfs]
        top1_path = dfs[0].at[0, 'identity']
        top1_pil = Image.open(top1_path)
        return json_list,[top1_pil]

    def embeddings(self,a):
        #embeddings
        embedding_objs = DeepFace.represent(
            img_path = a, 
            detector_backend = self.backends[5],
        )
        face_areas = []
        for obj in embedding_objs:
            face_areas.append(obj['facial_area']) 
        face = self.draw_face_box(a,face_areas)
        current_timestamp = time.time()
        if self.need_save_image:
                face.save(f"{current_timestamp}.png")
        return embedding_objs,[face]
    
    def analysis(self,a):
        #facial analysis
        demographies = DeepFace.analyze(
            img_path = a, 
            detector_backend = self.backends[5],
        )

        face_areas = []
        for obj in demographies:
            face_areas.append(obj['region']) 
        face = self.draw_face_box(a,face_areas)

        current_timestamp = time.time()
        if self.need_save_image:
                face.save(f"{current_timestamp}.png")
        return demographies,[face]

    def detect(self,a):
        #face detection and alignment
        face_objs = DeepFace.extract_faces(
            img_path = a, 
            detector_backend = self.backends[4],
        )

        ret = []
        faces = []
        # 获取当前时间戳
        current_timestamp = time.time()
        for i,obj in enumerate(face_objs):
            print(obj['face'])
            face_image = self.np_to_pil(obj['face'])
            if self.need_save_image:
                face_image.save(f"{current_timestamp}_{i}.png")
            item = {'facial_area':obj['facial_area'],'confidence':obj['confidence']}
            ret.append(item)
            faces.append(face_image)
        return ret,faces

# if __name__ == "__main__":
    
#     m = FaceAlgo(need_save_image=True)  # pragma: no cover

#     image = Image.open("./test/face1.jpeg")
#     image1 = Image.open("./test/face2.jpeg")
#     out = m.predict(image,image1,algo_type="recognize")
#     print("-----------------",out)